ebook img

Algebra: Notes From The Underground PDF

490 Pages·2021·3.859 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra: Notes From The Underground

Algebra From rings to modules to groups to fields, this undergraduate introduction to abstract algebrafollowsanunconventional path.Thetextemphasizesamodernperspectiveon the subject, with gentle mentions of the unifying categorical principles underlying the variousconstructionsandtheroleofuniversalproperties.Akeyfeatureisthetreatment of modules, including a proof of the classification theorem for finitely generated modules over Euclidean domains. Noetherian modules and some of the language of exact complexes are introduced. In addition, standard topics—such as the Chinese RemainderTheorem,theGaussLemma,theSylowTheorems,simplicityofalternating groups, standard results on field extensions, and the Fundamental Theorem of Galois Theory—are all treated in detail. Students will appreciate the text’s conversational style,400+exercises,appendixwithcompletesolutionstoaround150ofthemaintext problems,andappendixwithgeneralbackgroundonbasiclogicandnaïvesettheory. Paolo Aluffi is Professor of Mathematics at Florida State University. Aluffi earned a Ph.D. from Brown University with a dissertation on the enumerative geometry of plane cubic curves, under the supervision of William Fulton. His research interests are in algebraic geometry, particularly intersection theory and its application to the theoryofsingularitiesandconnectionswiththeoreticalphysics.Hehasauthoredabout 70 research publications and given lectures on his work in 15 countries. Beside Notes fromtheUnderground,hehaspublishedagraduate-leveltextbookinalgebra(Algebra: Chapter 0, AMS) and a mathematics book for the general public, in Italian (Fare matematica,AracneEditrice). CAMBRIDGEMATHEMATICALTEXTBOOKS Cambridge Mathematical Textbooks is a program of undergraduate and beginning graduate- leveltextbooksforcorecourses,newcourses,andinterdisciplinarycoursesinpureandapplied mathematics.Thesetextsprovidemotivationwithplentyofexercisesofvaryingdifficulty,inter- estingexamples,modernapplications,anduniqueapproachestothematerial. AdvisoryBoard JohnB.Conway,GeorgeWashingtonUniversity GregoryF.Lawler,UniversityofChicago JohnM.Lee,UniversityofWashington JohnMeier,LafayetteCollege LawrenceC.Washington,UniversityofMaryland,CollegePark Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics Recenttitlesincludethefollowing: Chance,Strategy,andChoice:AnIntroductiontotheMathematicsofGamesandElections, S.B.Smith SetTheory:AFirstCourse,D.W.Cunningham ChaoticDynamics:Fractals,Tilings,andSubstitutions,G.R.Goodson ASecondCourseinLinearAlgebra,S.R.Garcia&R.A.Horn IntroductiontoExperimentalMathematics,S.Eilers&R.Johansen ExploringMathematics:AnEngagingIntroductiontoProof,J.Meier&D.Smith AFirstCourseinAnalysis,J.B.Conway IntroductiontoProbability,D.F.Anderson,T.Seppäläinen&B.Valkó LinearAlgebra,E.S.Meckes&M.W.Meckes AShortCourseinDifferentialTopology,B.I.Dundas AbstractAlgebrawithApplications,A.Terras Algebra PAOLO ALUFFI FloridaStateUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108958233 DOI:10.1017/9781108955911 ©PaoloAluffi2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-95823-3Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Introduction pageix BeforeweBegin xiii PartI Rings 1 1 TheIntegers 3 1.1 TheWell-OrderingPrincipleandInduction 3 1.2 ‘DivisionwithRemainder’inZ 6 1.3 GreatestCommonDivisors 7 1.4 TheFundamentalTheoremofArithmetic 12 Exercises 20 2 ModularArithmetic 22 2.1 EquivalenceRelationsandQuotients 22 2.2 Congruencemodn 23 2.3 AlgebrainZ/nZ 26 2.4 PropertiesoftheOperations+,·onZ/nZ 29 2.5 Fermat’sLittleTheorem,andtheRSAEncryptionSystem 34 Exercises 39 3 Rings 41 3.1 DefinitionandExamples 41 3.2 BasicProperties 47 3.3 SpecialTypesofRings 51 Exercises 57 4 TheCategoryofRings 59 4.1 CartesianProducts 59 4.2 Subrings 61 4.3 RingHomomorphisms 64 4.4 IsomorphismsofRings 69 Exercises 75 vi Contents 5 CanonicalDecomposition,Quotients,andIsomorphismTheorems 77 5.1 Rings:CanonicalDecomposition,I 77 5.2 KernelsandIdeals 79 5.3 QuotientRings 83 5.4 Rings:CanonicalDecomposition,II 89 5.5 TheFirstIsomorphismTheorem 91 5.6 TheChineseRemainderTheorem 93 5.7 TheThirdIsomorphismTheorem 100 Exercises 103 6 IntegralDomains 106 6.1 PrimeandMaximalIdeals 106 6.2 PrimesandIrreducibles 110 6.3 EuclideanDomainsandPIDs 112 6.4 PIDsandUFDs 117 6.5 TheFieldofFractionsofanIntegralDomain 120 Exercises 126 7 PolynomialRingsandFactorization 129 7.1 Fermat’sLastTheoremforPolynomials 129 7.2 ThePolynomialRingwithCoefficientsinaField 131 7.3 IrreducibilityinPolynomialRings 136 7.4 IrreducibilityinQ[x]andZ[x] 139 7.5 IrreducibilityTestsinZ[x] 143 Exercises 148 PartII Modules 151 8 ModulesandAbelianGroups 153 8.1 VectorSpacesandIdeals,Revisited 153 8.2 TheCategoryofR-Modules 158 8.3 Submodules,DirectSums 161 8.4 CanonicalDecompositionandQuotients 164 8.5 IsomorphismTheorems 168 Exercises 171 9 ModulesoverIntegralDomains 174 9.1 FreeModules 174 9.2 ModulesfromMatrices 181 9.3 FinitelyGeneratedvs.FinitelyPresented 187 9.4 VectorSpacesareFreeModules 190 9.5 FinitelyGeneratedModulesoverEuclideanDomains 193 9.6 LinearTransformationsandModulesoverk[t] 197 Exercises 199 Contents vii 10 AbelianGroups 202 10.1 TheCategoryofAbelianGroups 202 10.2 CyclicGroups,andOrdersofElements 207 10.3 TheClassificationTheorem 212 10.4 Fermat’sTheoremonSumsofSquares 217 Exercises 223 PartIII Groups 227 11 Groups—Preliminaries 229 11.1 GroupsandtheirCategory 229 11.2 WhyGroups?ActionsofaGroup 235 11.3 Cyclic,Dihedral,Symmetric,FreeGroups 241 11.4 CanonicalDecomposition,Normality,andQuotients 253 11.5 IsomorphismTheorems 260 Exercises 264 12 BasicResultsonFiniteGroups 267 12.1 TheIndexofaSubgroup,andLagrange’sTheorem 267 12.2 StabilizersandtheClassEquation 269 12.3 ClassificationandSimplicity 274 12.4 Sylow’sTheorems:Statements,Applications 276 12.5 Sylow’sTheorems:Proofs 280 12.6 SimplicityofA 282 n 12.7 SolvableGroups 286 Exercises 289 PartIV Fields 293 13 FieldExtensions 295 13.1 FieldsandHomomorphismsofFields 295 13.2 FiniteExtensionsandtheDegreeofanExtension 299 13.3 SimpleExtensions 301 13.4 AlgebraicExtensions 307 13.5 Application:‘GeometricImpossibilities’ 309 Exercises 314 14 NormalandSeparableExtensions,andSplittingFields 317 14.1 SimpleExtensions,Again 317 14.2 SplittingFields 320 14.3 NormalExtensions 326 14.4 SeparableExtensions;andSimpleExtensionsOnceAgain 328 14.5 Application:FiniteFields 333 Exercises 337 viii Contents 15 GaloisTheory 340 15.1 GaloisGroupsandGaloisExtensions 340 15.2 CharacterizationofGaloisExtensions 345 15.3 TheFundamentalTheoremofGaloisTheory 350 15.4 GaloisGroupsofPolynomials 357 15.5 SolvingPolynomialEquationsbyRadicals 361 15.6 OtherApplications 370 Exercises 373 AppendixA Background 377 AppendixB SolutionstoSelectedExercises 402 IndexofDefinitions 461 IndexofTheorems 463 SubjectIndex 465

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.