ebook img

Algebra: monomials and polynomials [lecture notes] PDF

324 Pages·2012·1.556 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra: monomials and polynomials [lecture notes]

Algebra: Monomials and Polynomials JohnPerry UniversityofSouthernMississippi [email protected] http://www.math.usm.edu/perry/ Copyright2012JohnPerry www.math.usm.edu/perry/ CreativeCommonsAttribution-Noncommercial-ShareAlike3.0UnitedStates Youarefree: • toShare—tocopy,distributeandtransmitthework • toRemix—toadaptthework Underthefollowingconditions: • Attribution—Youmustattributetheworkinthemannerspecifiedbytheauthororlicensor (butnotinanywaythatsuggeststhattheyendorseyouoryouruseofthework). • Noncommercial—Youmaynotusethisworkforcommercialpurposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the re- sultingworkonlyunderthesameorsimilarlicensetothisone. Withtheunderstandingthat: • Waiver—Any of the above conditions can be waived if you get permission from the copy- rightholder. • OtherRights—Innowayareanyofthefollowingrightsaffectedbythelicense: ◦ Yourfairdealingorfairuserights; ◦ Apartfromtheremixrightsgrantedunderthislicense,theauthor’smoralrights; ◦ Rights other persons may have either in the work itself or in how the work is used, suchaspublicityorprivacyrights. • Notice—For any reuse or distribution, you must make clear to others the license terms of thiswork. Thebestwaytodothisiswithalinktothiswebpage: http://creativecommons.org/licenses/by-nc-sa/3.0/ us/legalcode Table of Contents Reference sheet for notation ........................................................... iv A few acknowledgements .............................................................. vi Preface................................................................................vii Overview ........................................................................... vii Three interesting problems.............................................................1 Part I. Monoids 1. From integers to monoids............................................................4 1. Somefactsabouttheintegers..........................................................6 2. Integers,monomials,andmonoids....................................................11 3. DirectProductsandIsomorphism .................................................... 16 Part II. Groups 2. Groups.............................................................................24 1. Groups............................................................................24 2. Thesymmetriesofatriangle.........................................................32 3. Cyclicgroupsandorder.............................................................38 4. Therootsofunity...................................................................45 5. EllipticCurves.....................................................................48 3. Subgroups..........................................................................52 1. Subgroups ......................................................................... 52 2. Cosets.............................................................................56 3. Lagrange’sTheorem ................................................................ 61 4. QuotientGroups...................................................................64 5. “Clockwork”groups ................................................................ 70 6. “Solvable”groups...................................................................73 4. Isomorphisms ...................................................................... 79 1. Homomorphisms...................................................................79 2. Consequencesofisomorphism........................................................85 3. TheIsomorphismTheorem .......................................................... 90 4. Automorphismsandgroupsofautomorphisms.........................................94 5. Groups of permutations ............................................................ 98 1. Permutations ...................................................................... 98 2. Cyclenotation....................................................................101 3. Dihedralgroups...................................................................109 4. Cayley’sTheorem ................................................................. 114 5. Alternatinggroups ................................................................ 117 6. The15-puzzle.....................................................................121 i 6. Number theory....................................................................125 1. TheEuclideanAlgorithm .......................................................... 125 2. TheChineseRemainderTheorem ................................................... 129 3. TheFundamentalTheoremofArithmetic............................................136 4. Multiplicativeclockworkgroups.....................................................138 5. Euler’sTheorem...................................................................143 6. RSAEncryption .................................................................. 146 Part III. Rings 7. Rings..............................................................................154 1. Astructureforadditionandmultiplication .......................................... 154 2. IntegralDomainsandFields........................................................158 3. Polynomialrings..................................................................163 4. Euclideandomains................................................................170 8. Ideals..............................................................................177 1. Ideals............................................................................177 2. PrincipalIdealDomains...........................................................183 3. Primeandmaximalideals..........................................................187 4. QuotientRings ................................................................... 190 5. FiniteFieldsI.....................................................................195 6. Ringisomorphisms................................................................201 9. Factorization......................................................................208 1. Thelinkbetweenfactoringandideals................................................208 2. UniqueFactorizationdomains......................................................211 3. FinitefieldsII.....................................................................213 4. Extendingaringbyaroot..........................................................220 5. Polynomialfactorizationinfinitefields .............................................. 223 6. Factoringintegerpolynomials.......................................................231 10. Roots of multivariate polyomials..................................................234 1. Gaussianelimination.............................................................235 2. Monomialorderings..............................................................241 3. Matrixrepresentationsofmonomialorderings.......................................248 4. ThestructureofaGröbnerbasis....................................................251 5. Buchberger’salgorithm............................................................261 6. Nullstellensatz...................................................................270 7. Elementaryapplications .......................................................... 272 11. Advanced methods of computing Gröbner bases .................................. 277 1. TheGebauer-Mölleralgorithm.....................................................277 2. TheF4algorithm.................................................................286 3. Signature-basedalgorithmstocomputeaGröbnerbasis...............................291 Part III. Appendices ii Where can I go from here? ........................................................... 300 Advancedgrouptheory..............................................................300 Advancedringtheory...............................................................300 Applications ....................................................................... 300 Hints to Exercises....................................................................301 HintstoChapter1..................................................................301 HintstoChapter2..................................................................302 HintstoChapter3..................................................................303 HintstoChapter4..................................................................304 HintstoChapter5..................................................................305 HintstoChapter6..................................................................305 HintstoChapter7..................................................................306 HintstoChapter8..................................................................307 HintstoChapter9..................................................................308 HintstoChapter10.................................................................308 Index................................................................................309 References ........................................................................... 312 iii Reference sheet for notation [r] theelement r +nZofZ n 〈 〉 g thegroup(orideal)generatedby g A thealternatinggrouponthreeelements 3 (cid:47) A G forG agroup,AisanormalsubgroupofG (cid:47) A R for Raring,Aisanidealof R (cid:112) C thecomplexnumbers{a+bi : a,b ∈Cand i = −1} [G,G] commutatorsubgroupofagroupG [x,y] for x and y inagroupG,thecommutatorof x and y Conj (H) thegroupofconjugationsof H bya a conj (x) theautomorphismofconjugationby g g D thesymmetriesofatriangle 3 | d n d divides n degf thedegreeofthepolynomial f D thedihedralgroupofsymmetriesofaregularpolygonwith n sides n D (R) thesetofalldiagonalmatriceswhosevaluesalongthediagonalisconstant n Z d thesetofintegermultiplesof d f (G) for f ahomomorphismandG agroup(orring),theimageofG Frac(R) thesetoffractionsofacommutativering R G/A thesetofleftcosetsofA \ G A thesetofrightcosetsofA gA theleftcosetofAwith g ∼ G =H G isisomorphicto H GL (R) thegenerallineargroupofinvertiblematrices m (cid:81)n G theordered n-tuplesofG ,G ,...,G i=1 i 1 2 n × G H theorderedpairsofelementsofG and H gz forG agroupand g,z ∈G,theconjugationof g by z,or zgz−1 < H G forG agroup, H isasubgroupofG kerf thekernelofthehomomorphism f lcm(t,u) theleastcommonmultipleofthemonomials t and u lm(p) theleadingmonomialofthepolynomial p lv(p) theleadingvariableofalinearpolynomial p M thesetofmonomialsinonevariable M thesetofmonomialsin n variables n N+ thepositiveintegers N (H) thenormalizerofasubgroup H ofG G N { } thenaturalorcountingnumbers 0,1,2,3... Ω the nthrootsofunity;thatis,allrootsofthepolynomial xn−1 n ord(x) theorderof x P thepointatinfinityonanellipticcurve ∞ Q thegroupofquaternions 8 Q therationalnumbers{a : a,b ∈Zand b (cid:54)=0} b R/A for R a ring and Aan ideal subring of R, R/Ais the quotient ring of R with respecttoA 〈 〉 r ,r ,...,r theidealgeneratedby r ,r ,...,r 1 2 m 1 2 m R therealnumbers,thosethatmeasureanylengthalongaline Rm×m m×m matriceswithrealcoefficients R[x] polynomialsinonevariablewithrealcoefficients R[x ,x ,...,x ] polynomialsin n variableswithrealcoefficients 1 2 n R[x ,x ,...,x ] theringofpolynomialswhosecoefficientsareinthegroundring R 1 2 n S thegroupofallpermutationsofalistof n elements n × S T theCartesianproductofthesets S andT tts(p) thetrailingtermsof p Z(G) centralizerofagroupG Z∗ Z thesetofelementsof thatarenot zerodivisors n n Z Z Z Z /n quotientgroup(resp. ring)of modulothesubgroup(resp. ideal) n Z { − } (cid:112) theintegers ..., 1,0,1,2,(cid:112)... (cid:148) (cid:151) Z − − 5 theringofintegers,adjoin 5 Z Z Z thequotientgroup /n n v A few acknowledgements [ These notes are inspired from some of my favorite algebra texts: AF05, CLO97, HA88, ] KR00,Lau03,LP98,Rot06,Rot98 . Theheritageishopefullynottooobvious,butinsomeplaces Ifeltcompelledtocitethesource. Thanks to the students who found typos, including (in no particular order) Jonathan Yarber, Kyle Fortenberry, Lisa Palchak, Ashley Sanders, Sedrick Jefferson, Shaina Barber, Blake Watkins,KrisKatterjohn,TaylorKilman,EricGustaffson,PatrickLambert,andothers. Special thanksgotomygraduatestudentMiaoYu,whoenduredthefirstdraftsofChapters7,8,and10. Rogério Brito of Universidade de São Paolo made several helpful comments, found some nastyerrors1,andsuggestedsomeoftheexercises. Ihavebeenluckytohavehadgreatalgebraprofessors;inchronologicalorder: • VanessaJobatMarymountUniversity; • AdrianRiskinatNorthernArizonaUniversity; • andatNorthCarolinaStateUniversity: ◦ KwangilKoh, ◦ HoonHong, ◦ ErichKaltofen, ◦ MichaelSinger,and ◦ AgnesSzanto. Boneheaded innovations of mine that looked good at the time but turned out bad in practice shouldnotbeblamedonanyoftheindividualsorsourcesnamedabove. Afterall,theyevaluated previousworkofmine,sotheconceptthatImightsaysomethingdumbwon’tcomeasasurprise tothem,andtheytriedveryhardtocuremeofthathabit. Thisisnotapeer-reviewedtext, which iswhyyouhaveasupplementarytextinthebookstore. Thefollowingsoftwarehelpedpreparethesenotes: • [ ] Sage3.xandlater Ste08 ; • [ ] [ ] [ ] Lyx Lyx (andthereforeLATEX Lam86,Grä04 (andthereforeTEX Knu84 )),alongwith thepackages ◦ cc-beamer[Pip07], ◦ hyperref[RO08], ◦ AMS-LATEX[Soc02], ◦ mathdesign[Pic06], ◦ thmtools,and ◦ algorithms(modifiedslightlyfromtheversionreleased2006/06/02)[Bri];and • [ ] Inkscape Bah08 . I’velikelyforgottensomeothernon-trivialresourcesthatIused. Letmeknowifanothercitation belongshere. Mywifeforeboreanumberoflatenightsattheoffice(orathome)asIworkedonthese. AdmaioremDeigloriam. 1Inoneegregiousexample,IconnectedtoomanydotsregardingtheoriginoftheChineseRemainderTheorem. Preface This is not a textbook. Okay,youask,whatisit,then? ThesearenotesIusewhenteachingclass. Butitlookslikeatextbook. Fine. Sosueme. —no,wait. Letmetrytoexplain. Atwo-semestersequenceonmodern algebraoughttointroducestudentstothefundamentalaspectsofgroupsandrings. That’salready abitemorethanmostcanchew,andIhavedifficultycoveringeventhestuffIthinkisnecessary. Unfortunately, most every algebra text I’ve encountered expend far too much effort in the first 50–100pageswithmaterialthatisnotalgebra. Theusualculpritisnumbertheory,butitisbyno meansthesoleoffender. Whohasthatkindoftime? Thenthere’s thewhole argumentabout whetherto startwith groups, rings, semigroups, ormonoids. Desiringamixofsimplicityandutility,Idecidedtowriteoutsomenotesthatwould getmeintogroupsassoonaspossible. Voilà. Youstillhaven’texplainedwhyitlookslikeatextbook. That’s because I wanted to organize, edit, rearrange, modify, and extend my notes easily. Ialsowantedthemindigitalform,sothat(a)Icouldreadthem,2 and(b)I’dbelesslikelytolose them. IusedasoftwareprogramcalledLyx,whichbuildsonLATEX;seetheAcknowledgments. WhatifI’dpreferanactualtextbook? Seethesyllabus. Overview These notes have two major parts: in one, we focus on an algebraic structure called a group; in the other, we focus on a special kind of group, a ring. In the first semester, therefore, wewanttocoverChapters2–5. Sincearigorousapproachrequiressomesortofintroduction,we reviewsomebasicsoftheintegersandthenaturalnumbers–butonlytosolidifythefoundation ofwhatstudentshavealreadylearned;wedonotdelveintonumbertheoryproper. Some of these ideas fit well with monomials, which I study “on occasion”. In algebra, a boringdiscussionofintegersandmonomialsnaturallyturnsintoafascinatingstoryofthebasics ofmonoids,whichactuallymakesforagentleintroductiontogroups. Iyieldedtotemptationand threwthatin. Thatshouldmakeslifeeasierlateron,anyway;abrief glanceatmonoids,focusing on commutative monoids without requiring commutativity, allows us to introduce prized ideas that will be developed in much more depth with groups, only in a context with which students are far more familiar. Repetitio mater studiorum, and all that.3 We restrict ourselves to the easier notions,sincethepointistogettogroups,andquickly. Ideally, we’d also cover Chapter 6, but one of the inexorable laws of life is that the older onegets, thefastertimepasses. Tempusfugit, andallthat.4 Thecorollaryforaprofessoristhata 2Youthinkyouhaveproblemsreadingmyhandwriting?Ihavetolivewithit! 3University students would do well to remember another Latin proverb, Vinum memoriæmors. I won’t provide a translation here; look it up, you chumps! Once upon a time, a proper education included familiarity with the wisdomofourancestors;thesedays,youcangetawaywithGooglingit.Oddly,recentstudiessuggestthattheLatin phraseshouldbeupdated:Googlememoriæmors. 4Latinisnotaprerequisiteofthiscourse,butitshouldbe.Googleit! semestergrowsshorterwitheachpassingyear,whichimpliesthatwecoverlesseveryyear. Ihave noideawhy. Inthesecondsemester,wedefinitelycoverChapters6through8,alongwithatleastoneof Chapter9or10. Chapter11isnotapartofeithercourse,butIincludeditforstudents(graduate or undergraduate) who want to pursue a research project, and need an introduction that builds on what came before. As of this writing, some of those chapters still need major debugging, so don’ttakeanythingyoureadtheretooseriously. Not much of the material can be omitted. Within each chapter, many examples are used and reused; this applies to exercises, as well. Textbooks often avoid this, in order to give instruc- torsmoreflexibility;Idon’tcareaboutotherinstructors’pointsofview,soIdon’tmindputting into the exercises problems that I return to later in the notes. We try to concentrate on a few important examples, re-examining them in the light of each new topic. One consequence is that ringscannotbetaughtindependentlyfromgroupsusingthesenotes. Togiveyouaheads-up,thefollowingmaterialwillprobablybeomitted. • I really like the idea of placing elliptic curves (Section 2.5) early in the class. Previous edi- tionsofthesenoteshadtheminthesectionimmediatelyaftertheintroductionofgroups! It gives students an immediate insight into how powerful abstraction can be. Unfortunately, Ihaven’tyetbeenabletogetgoingfastenoughtogetthemdone. • Groupsofautomorphisms(Section4.4)aregenerallyconsideredoptional. • Ihavenotinthepasttaughtsolvablegroups(Section3.6),buthopetodosoeventually. • Ihavesometimesnotmadeitpastalternatinggroups(Section5.5). ConsideringthatIused to be able to make it to the RSA algorithm (Section 6.6), that does not mean we won’t get there, especially since I’ve simplified the beginning. That was before I added the stuff on monoids,though... • The discussion of the 15-puzzle is simplified from other places I’ve found it, nonstandard, anddefinitelyoptional. viii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.