Alexey L. Gorodentsev Algebra I Textbook for Students of Mathematics Algebra I Alexey L. Gorodentsev Algebra I Textbook for Students of Mathematics 123 AlexeyL.Gorodentsev FacultyofMathematics NationalResearchUniversity “HigherSchoolofEconomics” Moscow,Russia OriginallypublishedinRussianas“Algebra.Uchebnikdlyastudentov-matematikov.Chast’ 1”,©MCCME2013 ISBN978-3-319-45284-5 ISBN978-3-319-45285-2 (eBook) DOI10.1007/978-3-319-45285-2 LibraryofCongressControlNumber:2016959261 MathematicsSubjectClassification(2010):11.01,12.01,13.01,14.01,15.01,16.01,18.01, 20.01 ©SpringerInternationalPublishingAG2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewhole or part of the material is concerned, specifically the rights of translation, reprinting, reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysical way,andtransmissionorinformationstorageandretrieval,electronicadaptation,computer software,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuse of general descriptive names, registerednames, trademarks, servicemarks, etc.in thispublicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnames areexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneral use. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublisher northeauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerial containedhereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisisthefirstpartofanintensive2-yearcourseofalgebraforstudentsbeginning aprofessionalstudyofhighermathematics.Thistextbookisbasedoncoursesgiven attheIndependentUniversityofMoscowandattheFacultyofMathematicsinthe NationalResearchUniversityHigherSchoolofEconomics.Inparticular,itcontains alargenumberofexercisesthatwerediscussedinclass,someofwhichareprovided with commentary and hints, as well as problems for independent solution, which wereassignedashomework.Workingouttheexercisesisofcrucialimportancein understandingthesubjectmatterofthisbook. Moscow,Russia AlexeyL.Gorodentsev v Contents 1 Set-TheoreticandCombinatorialBackground.......................... 1 1.1 SetsandMaps........................................................ 1 1.1.1 Sets.......................................................... 1 1.1.2 Maps......................................................... 2 1.1.3 FibersofMaps.............................................. 3 1.2 EquivalenceClasses.................................................. 7 1.2.1 EquivalenceRelations...................................... 7 1.2.2 ImplicitlyDefinedEquivalences........................... 9 1.3 CompositionsofMaps............................................... 10 1.3.1 CompositionVersusMultiplication........................ 10 1.3.2 RightInverseMapandtheAxiomofChoice ............. 11 1.3.3 InvertibleMaps............................................. 12 1.3.4 TransformationGroups..................................... 12 1.4 Posets ................................................................. 13 1.4.1 PartialOrderRelations..................................... 13 1.4.2 Well-OrderedSets .......................................... 15 1.4.3 Zorn’sLemma .............................................. 15 ProblemsforIndependentSolutiontoChap.1............................. 16 2 IntegersandResidues...................................................... 19 2.1 Fields,Rings,andAbelianGroups.................................. 19 2.1.1 DefinitionofaField........................................ 19 2.1.2 CommutativeRings......................................... 21 2.1.3 AbelianGroups............................................. 21 2.1.4 SubtractionandDivision................................... 23 2.2 TheRingofIntegers ................................................. 24 2.2.1 Divisibility.................................................. 24 2.2.2 TheEquationaxCby D kandtheGreatest CommonDivisorinZ...................................... 24 2.2.3 TheEuclideanAlgorithm .................................. 25 2.3 CoprimeElements.................................................... 26 vii viii Contents 2.4 RingsofResidues.................................................... 27 2.4.1 ResidueClassesModulon ................................. 27 2.4.2 ZeroDivisorsandNilpotents .............................. 28 2.4.3 InvertibleElementsinResidueRings ..................... 28 2.4.4 ResidueFields .............................................. 29 2.5 DirectProductsofCommutativeGroupsandRings................ 30 2.6 Homomorphisms..................................................... 31 2.6.1 HomomorphismsofAbelianGroups...................... 31 2.6.2 KernelofaHomomorphism ............................... 32 2.6.3 GroupofHomomorphisms................................. 32 2.6.4 HomomorphismsofCommutativeRings.................. 33 2.6.5 HomomorphismsofFields................................. 34 2.7 ChineseRemainderTheorem........................................ 34 2.8 Characteristic......................................................... 35 2.8.1 PrimeSubfield.............................................. 35 2.8.2 FrobeniusEndomorphism.................................. 36 ProblemsforIndependentSolutiontoChap.2............................. 37 3 PolynomialsandSimpleFieldExtensions ............................... 41 3.1 FormalPowerSeries ................................................. 41 3.1.1 RingsofFormalPowerSeries ............................. 41 3.1.2 AlgebraicOperationsonPowerSeries .................... 42 3.1.3 Polynomials................................................. 43 3.1.4 DifferentialCalculus ....................................... 44 3.2 PolynomialRings .................................................... 46 3.2.1 Division..................................................... 46 3.2.2 CoprimePolynomials ...................................... 48 3.2.3 EuclideanAlgorithm ....................................... 48 3.3 RootsofPolynomials ................................................ 50 3.3.1 CommonRoots............................................. 50 3.3.2 MultipleRoots.............................................. 51 3.3.3 SeparablePolynomials..................................... 51 3.4 AdjunctionofRoots.................................................. 52 3.4.1 ResidueClassRings........................................ 52 3.4.2 AlgebraicElements......................................... 54 3.4.3 AlgebraicClosure .......................................... 55 3.5 TheFieldofComplexNumbers..................................... 55 3.5.1 TheComplexPlane......................................... 55 3.5.2 ComplexConjugation...................................... 58 3.5.3 Trigonometry ............................................... 58 3.5.4 RootsofUnityandCyclotomicPolynomials ............. 60 3.5.5 TheGaussianIntegers...................................... 62 3.6 FiniteFields .......................................................... 62 3.6.1 FiniteMultiplicativeSubgroupsinFields................. 62 3.6.2 DescriptionofAllFiniteFields............................ 63 Contents ix 3.6.3 QuadraticResidues......................................... 65 ProblemsforIndependentSolutiontoChap.3............................. 66 4 ElementaryFunctionsandPowerSeriesExpansions .................. 73 4.1 RingsofFractions.................................................... 73 4.1.1 Localization................................................. 73 4.1.2 FieldofFractionsofanIntegralDomain.................. 75 4.2 FieldofRationalFunctions.......................................... 76 4.2.1 SimplifiedFractions........................................ 76 4.2.2 PartialFractionExpansion................................. 77 4.2.3 PowerSeriesExpansionsofRationalFunctions.......... 79 4.2.4 LinearRecurrenceRelations............................... 80 4.3 LogarithmandExponential.......................................... 82 4.3.1 TheLogarithm.............................................. 83 4.3.2 TheExponential............................................ 83 4.3.3 PowerFunctionandBinomialFormula ................... 84 4.4 Todd’sSeriesandBernoulliNumbers............................... 88 4.4.1 ActionofQ(cid:2)d=dt(cid:3)onQŒt(cid:2) ................................. 88 4.4.2 BernoulliNumbers ......................................... 91 4.5 FractionalPowerSeries.............................................. 92 4.5.1 PuiseuxSeries .............................................. 92 4.5.2 Newton’sMethod........................................... 96 ProblemsforIndependentSolutiontoChap.4............................. 100 5 Ideals,QuotientRings,andFactorization ............................... 103 5.1 Ideals.................................................................. 103 5.1.1 DefinitionandExamples................................... 103 5.1.2 NoetherianRings ........................................... 104 5.2 QuotientRings ....................................................... 106 5.2.1 FactorizationHomomorphism............................. 106 5.2.2 MaximalIdealsandEvaluationMaps ..................... 107 5.2.3 PrimeIdealsandRingHomomorphismstoFields........ 108 5.2.4 FinitelyGeneratedCommutativeAlgebras................ 109 5.3 PrincipalIdealDomains ............................................. 109 5.3.1 EuclideanDomains......................................... 109 5.3.2 GreatestCommonDivisor ................................. 110 5.3.3 CoprimeElements.......................................... 111 5.3.4 IrreducibleElements........................................ 111 5.4 UniqueFactorizationDomains ...................................... 112 5.4.1 IrreducibleFactorization ................................... 112 5.4.2 PrimeElements............................................. 114 5.4.3 GCDinUniqueFactorizationDomains................... 115 5.4.4 PolynomialsoverUniqueFactorizationDomains ........ 116 x Contents 5.5 FactorizationofPolynomialswithRationalCoefficients........... 118 5.5.1 ReductionofCoefficients .................................. 118 5.5.2 Kronecker’sAlgorithm..................................... 119 ProblemsforIndependentSolutiontoChap.5............................. 120 6 Vectors....................................................................... 123 6.1 VectorSpacesandModules.......................................... 123 6.1.1 DefinitionsandExamples.................................. 123 6.1.2 LinearMaps................................................. 124 6.1.3 ProportionalVectors........................................ 125 6.2 BasesandDimension ................................................ 127 6.2.1 LinearCombinations....................................... 127 6.2.2 LinearDependence......................................... 130 6.2.3 BasisofaVectorSpace..................................... 132 6.2.4 Infinite-DimensionalVectorSpaces ....................... 134 6.3 SpaceofLinearMaps................................................ 135 6.3.1 KernelandImage........................................... 135 6.3.2 MatrixofaLinearMap..................................... 136 6.4 VectorSubspaces..................................................... 138 6.4.1 Codimension................................................ 138 6.4.2 LinearSpans................................................ 138 6.4.3 SumofSubspaces .......................................... 139 6.4.4 TranversalSubspaces....................................... 140 6.4.5 DirectSumsandDirectProducts .......................... 141 6.5 AffineSpaces......................................................... 142 6.5.1 DefinitionandExamples................................... 142 6.5.2 AffinizationandVectorization............................. 143 6.5.3 CenterofMass.............................................. 143 6.5.4 AffineSubspaces ........................................... 145 6.5.5 AffineMaps................................................. 148 6.5.6 AffineGroups............................................... 148 6.6 QuotientSpaces ...................................................... 149 6.6.1 QuotientbyaSubspace .................................... 149 6.6.2 QuotientGroupsofAbelianGroups....................... 150 ProblemsforIndependentSolutiontoChap.6............................. 151 7 Duality ....................................................................... 155 7.1 DualSpaces........................................................... 155 7.1.1 Covectors.................................................... 155 7.1.2 CanonicalInclusionV ,!V(cid:2)(cid:2) ............................ 158 7.1.3 DualBases.................................................. 158 7.1.4 Pairings...................................................... 160 7.2 Annihilators .......................................................... 161 Contents xi 7.3 DualLinearMaps.................................................... 164 7.3.1 PullbackofLinearForms .................................. 164 7.3.2 RankofaMatrix............................................ 165 ProblemsforIndependentSolutiontoChap.7............................. 167 8 Matrices...................................................................... 173 8.1 AssociativeAlgebrasoveraField................................... 173 8.1.1 DefinitionofAssociativeAlgebra ......................... 173 8.1.2 InvertibleElements......................................... 174 8.1.3 AlgebraicandTranscendentalElements................... 175 8.2 MatrixAlgebras...................................................... 175 8.2.1 MultiplicationofMatrices ................................. 175 8.2.2 InvertibleMatrices.......................................... 179 8.3 TransitionMatrices................................................... 180 8.4 GaussianElimination ................................................ 182 8.4.1 EliminationbyRowOperations ........................... 182 8.4.2 LocationofaSubspacewithRespecttoaBasis .......... 190 8.4.3 GaussianMethodforInvertingMatrices.................. 192 8.5 MatricesoverNoncommutativeRings.............................. 195 ProblemsforIndependentSolutiontoChap.8............................. 199 9 Determinants................................................................ 205 9.1 VolumeForms........................................................ 205 9.1.1 Volumeofann-DimensionalParallelepiped.............. 205 9.1.2 Skew-SymmetricMultilinearForms....................... 207 9.2 DigressiononParitiesofPermutations.............................. 208 9.3 Determinants ......................................................... 210 9.3.1 BasicPropertiesofDeterminants.......................... 211 9.3.2 DeterminantofaLinearEndomorphism.................. 214 9.4 GrassmannianPolynomials.......................................... 215 9.4.1 PolynomialsinSkew-CommutingVariables.............. 215 9.4.2 LinearChangeofGrassmannianVariables................ 216 9.5 LaplaceRelations .................................................... 217 9.6 AdjunctMatrix ....................................................... 220 9.6.1 RowandColumnCofactorExpansions ................... 220 9.6.2 MatrixInversion............................................ 221 9.6.3 Cayley–HamiltonIdentity.................................. 222 9.6.4 Cramer’sRules.............................................. 223 ProblemsforIndependentSolutiontoChap.9............................. 225 10 EuclideanSpaces ........................................................... 229 10.1 InnerProduct......................................................... 229 10.1.1 EuclideanStructure......................................... 229 10.1.2 LengthofaVector.......................................... 230 10.1.3 Orthogonality............................................... 230
Description: