ebook img

Algebra I: Textbook for Students of Mathematics PDF

575 Pages·2016·5.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra I: Textbook for Students of Mathematics

Alexey L. Gorodentsev Algebra I Textbook for Students of Mathematics Algebra I Alexey L. Gorodentsev Algebra I Textbook for Students of Mathematics 123 AlexeyL.Gorodentsev FacultyofMathematics NationalResearchUniversity “HigherSchoolofEconomics” Moscow,Russia OriginallypublishedinRussianas“Algebra.Uchebnikdlyastudentov-matematikov.Chast’ 1”,©MCCME2013 ISBN978-3-319-45284-5 ISBN978-3-319-45285-2 (eBook) DOI10.1007/978-3-319-45285-2 LibraryofCongressControlNumber:2016959261 MathematicsSubjectClassification(2010):11.01,12.01,13.01,14.01,15.01,16.01,18.01, 20.01 ©SpringerInternationalPublishingAG2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewhole or part of the material is concerned, specifically the rights of translation, reprinting, reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysical way,andtransmissionorinformationstorageandretrieval,electronicadaptation,computer software,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuse of general descriptive names, registerednames, trademarks, servicemarks, etc.in thispublicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnames areexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneral use. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationin thisbookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublisher northeauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerial containedhereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thisisthefirstpartofanintensive2-yearcourseofalgebraforstudentsbeginning aprofessionalstudyofhighermathematics.Thistextbookisbasedoncoursesgiven attheIndependentUniversityofMoscowandattheFacultyofMathematicsinthe NationalResearchUniversityHigherSchoolofEconomics.Inparticular,itcontains alargenumberofexercisesthatwerediscussedinclass,someofwhichareprovided with commentary and hints, as well as problems for independent solution, which wereassignedashomework.Workingouttheexercisesisofcrucialimportancein understandingthesubjectmatterofthisbook. Moscow,Russia AlexeyL.Gorodentsev v Contents 1 Set-TheoreticandCombinatorialBackground.......................... 1 1.1 SetsandMaps........................................................ 1 1.1.1 Sets.......................................................... 1 1.1.2 Maps......................................................... 2 1.1.3 FibersofMaps.............................................. 3 1.2 EquivalenceClasses.................................................. 7 1.2.1 EquivalenceRelations...................................... 7 1.2.2 ImplicitlyDefinedEquivalences........................... 9 1.3 CompositionsofMaps............................................... 10 1.3.1 CompositionVersusMultiplication........................ 10 1.3.2 RightInverseMapandtheAxiomofChoice ............. 11 1.3.3 InvertibleMaps............................................. 12 1.3.4 TransformationGroups..................................... 12 1.4 Posets ................................................................. 13 1.4.1 PartialOrderRelations..................................... 13 1.4.2 Well-OrderedSets .......................................... 15 1.4.3 Zorn’sLemma .............................................. 15 ProblemsforIndependentSolutiontoChap.1............................. 16 2 IntegersandResidues...................................................... 19 2.1 Fields,Rings,andAbelianGroups.................................. 19 2.1.1 DefinitionofaField........................................ 19 2.1.2 CommutativeRings......................................... 21 2.1.3 AbelianGroups............................................. 21 2.1.4 SubtractionandDivision................................... 23 2.2 TheRingofIntegers ................................................. 24 2.2.1 Divisibility.................................................. 24 2.2.2 TheEquationaxCby D kandtheGreatest CommonDivisorinZ...................................... 24 2.2.3 TheEuclideanAlgorithm .................................. 25 2.3 CoprimeElements.................................................... 26 vii viii Contents 2.4 RingsofResidues.................................................... 27 2.4.1 ResidueClassesModulon ................................. 27 2.4.2 ZeroDivisorsandNilpotents .............................. 28 2.4.3 InvertibleElementsinResidueRings ..................... 28 2.4.4 ResidueFields .............................................. 29 2.5 DirectProductsofCommutativeGroupsandRings................ 30 2.6 Homomorphisms..................................................... 31 2.6.1 HomomorphismsofAbelianGroups...................... 31 2.6.2 KernelofaHomomorphism ............................... 32 2.6.3 GroupofHomomorphisms................................. 32 2.6.4 HomomorphismsofCommutativeRings.................. 33 2.6.5 HomomorphismsofFields................................. 34 2.7 ChineseRemainderTheorem........................................ 34 2.8 Characteristic......................................................... 35 2.8.1 PrimeSubfield.............................................. 35 2.8.2 FrobeniusEndomorphism.................................. 36 ProblemsforIndependentSolutiontoChap.2............................. 37 3 PolynomialsandSimpleFieldExtensions ............................... 41 3.1 FormalPowerSeries ................................................. 41 3.1.1 RingsofFormalPowerSeries ............................. 41 3.1.2 AlgebraicOperationsonPowerSeries .................... 42 3.1.3 Polynomials................................................. 43 3.1.4 DifferentialCalculus ....................................... 44 3.2 PolynomialRings .................................................... 46 3.2.1 Division..................................................... 46 3.2.2 CoprimePolynomials ...................................... 48 3.2.3 EuclideanAlgorithm ....................................... 48 3.3 RootsofPolynomials ................................................ 50 3.3.1 CommonRoots............................................. 50 3.3.2 MultipleRoots.............................................. 51 3.3.3 SeparablePolynomials..................................... 51 3.4 AdjunctionofRoots.................................................. 52 3.4.1 ResidueClassRings........................................ 52 3.4.2 AlgebraicElements......................................... 54 3.4.3 AlgebraicClosure .......................................... 55 3.5 TheFieldofComplexNumbers..................................... 55 3.5.1 TheComplexPlane......................................... 55 3.5.2 ComplexConjugation...................................... 58 3.5.3 Trigonometry ............................................... 58 3.5.4 RootsofUnityandCyclotomicPolynomials ............. 60 3.5.5 TheGaussianIntegers...................................... 62 3.6 FiniteFields .......................................................... 62 3.6.1 FiniteMultiplicativeSubgroupsinFields................. 62 3.6.2 DescriptionofAllFiniteFields............................ 63 Contents ix 3.6.3 QuadraticResidues......................................... 65 ProblemsforIndependentSolutiontoChap.3............................. 66 4 ElementaryFunctionsandPowerSeriesExpansions .................. 73 4.1 RingsofFractions.................................................... 73 4.1.1 Localization................................................. 73 4.1.2 FieldofFractionsofanIntegralDomain.................. 75 4.2 FieldofRationalFunctions.......................................... 76 4.2.1 SimplifiedFractions........................................ 76 4.2.2 PartialFractionExpansion................................. 77 4.2.3 PowerSeriesExpansionsofRationalFunctions.......... 79 4.2.4 LinearRecurrenceRelations............................... 80 4.3 LogarithmandExponential.......................................... 82 4.3.1 TheLogarithm.............................................. 83 4.3.2 TheExponential............................................ 83 4.3.3 PowerFunctionandBinomialFormula ................... 84 4.4 Todd’sSeriesandBernoulliNumbers............................... 88 4.4.1 ActionofQ(cid:2)d=dt(cid:3)onQŒt(cid:2) ................................. 88 4.4.2 BernoulliNumbers ......................................... 91 4.5 FractionalPowerSeries.............................................. 92 4.5.1 PuiseuxSeries .............................................. 92 4.5.2 Newton’sMethod........................................... 96 ProblemsforIndependentSolutiontoChap.4............................. 100 5 Ideals,QuotientRings,andFactorization ............................... 103 5.1 Ideals.................................................................. 103 5.1.1 DefinitionandExamples................................... 103 5.1.2 NoetherianRings ........................................... 104 5.2 QuotientRings ....................................................... 106 5.2.1 FactorizationHomomorphism............................. 106 5.2.2 MaximalIdealsandEvaluationMaps ..................... 107 5.2.3 PrimeIdealsandRingHomomorphismstoFields........ 108 5.2.4 FinitelyGeneratedCommutativeAlgebras................ 109 5.3 PrincipalIdealDomains ............................................. 109 5.3.1 EuclideanDomains......................................... 109 5.3.2 GreatestCommonDivisor ................................. 110 5.3.3 CoprimeElements.......................................... 111 5.3.4 IrreducibleElements........................................ 111 5.4 UniqueFactorizationDomains ...................................... 112 5.4.1 IrreducibleFactorization ................................... 112 5.4.2 PrimeElements............................................. 114 5.4.3 GCDinUniqueFactorizationDomains................... 115 5.4.4 PolynomialsoverUniqueFactorizationDomains ........ 116 x Contents 5.5 FactorizationofPolynomialswithRationalCoefficients........... 118 5.5.1 ReductionofCoefficients .................................. 118 5.5.2 Kronecker’sAlgorithm..................................... 119 ProblemsforIndependentSolutiontoChap.5............................. 120 6 Vectors....................................................................... 123 6.1 VectorSpacesandModules.......................................... 123 6.1.1 DefinitionsandExamples.................................. 123 6.1.2 LinearMaps................................................. 124 6.1.3 ProportionalVectors........................................ 125 6.2 BasesandDimension ................................................ 127 6.2.1 LinearCombinations....................................... 127 6.2.2 LinearDependence......................................... 130 6.2.3 BasisofaVectorSpace..................................... 132 6.2.4 Infinite-DimensionalVectorSpaces ....................... 134 6.3 SpaceofLinearMaps................................................ 135 6.3.1 KernelandImage........................................... 135 6.3.2 MatrixofaLinearMap..................................... 136 6.4 VectorSubspaces..................................................... 138 6.4.1 Codimension................................................ 138 6.4.2 LinearSpans................................................ 138 6.4.3 SumofSubspaces .......................................... 139 6.4.4 TranversalSubspaces....................................... 140 6.4.5 DirectSumsandDirectProducts .......................... 141 6.5 AffineSpaces......................................................... 142 6.5.1 DefinitionandExamples................................... 142 6.5.2 AffinizationandVectorization............................. 143 6.5.3 CenterofMass.............................................. 143 6.5.4 AffineSubspaces ........................................... 145 6.5.5 AffineMaps................................................. 148 6.5.6 AffineGroups............................................... 148 6.6 QuotientSpaces ...................................................... 149 6.6.1 QuotientbyaSubspace .................................... 149 6.6.2 QuotientGroupsofAbelianGroups....................... 150 ProblemsforIndependentSolutiontoChap.6............................. 151 7 Duality ....................................................................... 155 7.1 DualSpaces........................................................... 155 7.1.1 Covectors.................................................... 155 7.1.2 CanonicalInclusionV ,!V(cid:2)(cid:2) ............................ 158 7.1.3 DualBases.................................................. 158 7.1.4 Pairings...................................................... 160 7.2 Annihilators .......................................................... 161 Contents xi 7.3 DualLinearMaps.................................................... 164 7.3.1 PullbackofLinearForms .................................. 164 7.3.2 RankofaMatrix............................................ 165 ProblemsforIndependentSolutiontoChap.7............................. 167 8 Matrices...................................................................... 173 8.1 AssociativeAlgebrasoveraField................................... 173 8.1.1 DefinitionofAssociativeAlgebra ......................... 173 8.1.2 InvertibleElements......................................... 174 8.1.3 AlgebraicandTranscendentalElements................... 175 8.2 MatrixAlgebras...................................................... 175 8.2.1 MultiplicationofMatrices ................................. 175 8.2.2 InvertibleMatrices.......................................... 179 8.3 TransitionMatrices................................................... 180 8.4 GaussianElimination ................................................ 182 8.4.1 EliminationbyRowOperations ........................... 182 8.4.2 LocationofaSubspacewithRespecttoaBasis .......... 190 8.4.3 GaussianMethodforInvertingMatrices.................. 192 8.5 MatricesoverNoncommutativeRings.............................. 195 ProblemsforIndependentSolutiontoChap.8............................. 199 9 Determinants................................................................ 205 9.1 VolumeForms........................................................ 205 9.1.1 Volumeofann-DimensionalParallelepiped.............. 205 9.1.2 Skew-SymmetricMultilinearForms....................... 207 9.2 DigressiononParitiesofPermutations.............................. 208 9.3 Determinants ......................................................... 210 9.3.1 BasicPropertiesofDeterminants.......................... 211 9.3.2 DeterminantofaLinearEndomorphism.................. 214 9.4 GrassmannianPolynomials.......................................... 215 9.4.1 PolynomialsinSkew-CommutingVariables.............. 215 9.4.2 LinearChangeofGrassmannianVariables................ 216 9.5 LaplaceRelations .................................................... 217 9.6 AdjunctMatrix ....................................................... 220 9.6.1 RowandColumnCofactorExpansions ................... 220 9.6.2 MatrixInversion............................................ 221 9.6.3 Cayley–HamiltonIdentity.................................. 222 9.6.4 Cramer’sRules.............................................. 223 ProblemsforIndependentSolutiontoChap.9............................. 225 10 EuclideanSpaces ........................................................... 229 10.1 InnerProduct......................................................... 229 10.1.1 EuclideanStructure......................................... 229 10.1.2 LengthofaVector.......................................... 230 10.1.3 Orthogonality............................................... 230

Description:
This book is the first volume of an intensive “Russian-style” two-year graduate course in abstract algebra, and introduces readers to the basic algebraic structures – fields, rings, modules, algebras, groups, and categories – and explains the main principles of and methods for working with
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.