CK-12 F OUNDATION CK-12 Algebra I Teacher’s Edition Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) Fay-Zenk McFarland To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook mate- rials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2011 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®”, and “FlexBook Platform®”, (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Complete terms can be found at http://www.ck12.org/terms. Printed: August 9, 2011 Authors Mary Fay-Zenk, Andrew McFarland i www.ck12.org Contents 1 TE Equations and Functions 1 1.1 Variable Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Order of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Patterns and Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Equations and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Functions as Rules and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Functions as Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 Problem-Solving Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 Problem-Solving Strategies: Make a Table; Look for a Pattern. . . . . . . . . . . . . . . . . 12 2 TE Real Numbers 14 2.1 Integers and Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Addition of Rational Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Subtraction of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Multiplication of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 The Distributive Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Division of Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 Square Roots and Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.8 Problem-Solving Strategies: Guess and Check; Work Backward . . . . . . . . . . . . . . . . 28 3 TE Equations of Lines 29 3.1 One-Step Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Two-Step Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Multi-Step Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Equations with Variables on Both Sides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Ratios and Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 Scale and Indirect Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.7 Percent Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.8 Problem-Solving Strategies: Use a Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 www.ck12.org ii 4 TE Graphs of Equations and Functions 44 4.1 The Coordinate Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Graphs of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Graphing Using Intercepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 Slope and Rate of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Graphs Using Slope-Intercept Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.6 Direct Variation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.7 Linear Function Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.8 Problem-Solving Strategies - Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 TE Writing Linear Equations 56 5.1 Linear Equations in Slope-Intercept Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Linear Equations in Point-Slope Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3 Linear Equations in Standard Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Equations of Parallel and Perpendicular Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.5 Fitting a Line to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.6 Predicting with Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7 Problem Solving Strategies: Use a Linear Model . . . . . . . . . . . . . . . . . . . . . . . . 64 6 TE Graphing Linear Inequalities 66 6.1 Inequalities Using Addition and Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 Inequalities Using Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Multi-Step Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4 Compound Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.5 Absolute Value Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.6 Absolute Value Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.7 Linear Inequalities in Two Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7 TE Solving Systems of Equations and Inequalities 79 7.1 Linear Systems by Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.2 Solving Linear Systems by Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.3 Solving Linear Systems by Elimination through Addition or Subtraction . . . . . . . . . . . 84 7.4 Solving Systems of Equations by Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.5 Special Types of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.6 Systems of Linear Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 iii www.ck12.org 8 TE Exponential Functions 90 8.1 Exponent Properties Involving Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.2 Exponent Properties Involving Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8.3 Zero, Negative, and Fractional Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8.4 Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.5 Exponential Growth Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.6 Exponential Decay Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.7 Geometric Sequences and Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . 100 8.8 Problem-Solving Strategies (reprise Make a Table; Look for a Pattern) . . . . . . . . . . . . 102 9 TE Factoring Polynomials 103 9.1 Addition and Subtraction of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 9.2 Multiplication of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3 Special Products of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 9.4 Polynomial Equations in Factored Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9.5 Factoring Quadratic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.6 Factoring Special Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.7 Factoring Polynomials Completely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10 TE Quadratic Equations and Quadratic Functions 116 10.1 Graphs of Quadratic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 10.2 Quadratic Equations by Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 10.3 Quadratic Equations by Square Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.4 Quadratic Equations by Completing the Square . . . . . . . . . . . . . . . . . . . . . . . . . 122 10.5 Quadratic Equations by the Quadratic Formula . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.6 The Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.7 Linear, Exponential and Quadratic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 10.8 Problem Solving Strategies: Choose a Function Model . . . . . . . . . . . . . . . . . . . . . 128 11 TE Algebra and Geometry Connections; Working with Data 130 11.1 Graphs of Square Root Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 11.2 Radical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 11.3 Radical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 11.4 The Pythagorean Theorem and Its Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 11.5 Distance and Midpoint Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 11.6 Measures of Central Tendency and Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 140 www.ck12.org iv 11.7 Stem-and-Leaf Plots and Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 11.8 Box-and-Whisker Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 12 TE Rational Equations and Functions; Topics in Statistics 146 12.1 Inverse Variation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 12.2 Graphs of Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 12.3 Division of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 12.4 Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12.5 Multiplication and Division of Rational Expressions . . . . . . . . . . . . . . . . . . . . . . 152 12.6 Addition and Subtraction of Rational Expressions . . . . . . . . . . . . . . . . . . . . . . . 153 12.7 Solutions of Rational Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 12.8 Surveys and Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 v www.ck12.org www.ck12.org vi Chapter 1 TE Equations and Functions Overview Equations and Functions consists of eight lessons that introduce students to the language of algebra. Suggested Pacing: Variable Expressions - 1 hr Order of Operations - 1 hr Patterns and Equations - 1−2 hrs Equations and Inequalities - 1−2 hrs Functions as Rules and Tables - 0:5 hrs Functions as Graphs - 1 hr Problem-Solving Plan - 0:5 hr Problem-Solving Strategies: - 2 hrs Make a Table; Look for a Pattern If you would like access to the Solution Key FlexBook for even-numbered exercises, the Assessment Flex- Book and the Assessment Answers FlexBook please contact us at [email protected]. Problem-Solving Strand for Mathematics The problem-solving strategies presented in this chapter, Make a Table and Look for Patterns, are foun- dational techniques. Making a Table can help structure a student’s ability to organize and clarify the data presented and teach the student to communicate more clearly. When teaching Look for a Pattern, ask questions such as: • Can you identify a pattern in the given examples that would let you extend the data? • Do you observe any pattern that applies to all the given examples? • Can you find a relationship or operation(s) that would allow you to predict another term? Alignment with the NCTM Process Standards Two promising practices, focused on the communication standards, can be effectively used with these strategies. The first is setting aside a time on a regular basis (i.e. once a week) to have students write 1 www.ck12.org about the problem solving they have been doing (COM.2). Present a daily warm-up problem which is well suited to the strategy being learned such as Look for a Pattern. Students work on one problem a day, first individually and then as a group with teacher leadership and summation. Each day the problem is discussed and solved, and many different points of view are shared in the process (COM.1, COM.3). At the end of the week, students are asked to write about any one of the problems they did earlier in the week. This practice pushes students to develop logical thinking skills, to benefit from the classroom work that was shared earlier in the week, and to learn to communicate mathematical ideas clearly (COM.4). It also gives students a choice; they only have to write about one of the problems, and it can be the problem that made the most sense to them. Oftentimes, unfortunately, we do not honor enough what makes sense to students; we expect them only to be able to follow the logic presented to them. We must give them experiences of “sense-making” as well (RP.1, RP.2). A second practice is posting student work, such as: • gallery walks where work in progress can be viewed • posters that highlight exceptionally well done solutions • student essays posted on the classroom wall What matters is that students’ work is valued and shared (RP.3). If these pieces are large enough to be seen from a distance, this practice helps students to recall various approaches to solving problems (RP.4) and keeps their thinking “alive.” • COM.1 - Organize and consolidate their mathematical thinking through communication. • COM.2 - Communicate their mathematical thinking coherently and clearly to peers, teachers, and others. • COM.3 - Analyze and evaluate the mathematical thinking and strategies of others. • COM.4 - Use the language of mathematics to express mathematical ideas precisely. • RP.1 - Recognize reasoning and proof as fundamental aspects of mathematics. • RP.2 - Make and investigate mathematical conjectures. • RP.3 - Develop and evaluate mathematical arguments and proofs. • RP.4 - Select and use various types of reasoning and methods of proof. 1.1 Variable Expressions Learning Objectives At the end of this lesson, students will be able to: • Evaluate algebraic expressions. • Evaluate algebraic expressions with exponents. Vocabulary Terms introduced in this lesson: algebra generalize variables www.ck12.org 2