ebook img

Algebra Class 9 (Zambak) PDF

331 Pages·05.781 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Algebra Class 9 (Zambak)

M O D U L A R S Y S T E M Class 9 ALGEBRA ? www.zambak.com Copyright © Zambak Yayýncýlýk ve Eðitim Gereçleri A.Þ. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form without the prior written permission of the publisher. Digital Assembly Zambak Typesetting & Design Page Design Serdar YILDIRIM Aydýn ÇETÝN Proofreader Zoe Barnett Publisher Zambak Yayýncýlýk ve Eðitim Gereçleri A.Þ. Printed by Çaðlayan A.Þ. Gaziemir / zmir, August 2012 Tel: +90-232 252 22 85 +90-232 522 20 96 / 97 IISSBBNN:: 997788-660055-111122-446677-44 Printed in Turkey DDIISSTTRRIIBBUUTTIIOONN Zambak Yayýncýlýk ve Eðitim Gereçleri A.Þ. Mahmutbey Merkez Mah. Souksu Cad. No. 31 Tek-er Merkezi Baclar / ÝSTANBUL _______________________ Tel.: +90-212 604 21 00 Fax: +90-212 604 21 12 http://book.zambak.com To the Teacher, Analytic Analysis of Lines and Circles is designed to provide students with the analytic geometry background needed for further college-level geometry courses. Analytic geometry can be defined as algebraic analysis applied to geometrical concepts and figures, or the use of geometrical concepts and figures to illustrate algebraic forms. Analytic geometry has many applications in different branches of science and makes it easier to solve a wide variety of problems. The goal of this text is to help students develop the skills necessary for solving analytic geometry problems, and then help students apply these skills. By the end of the book, students will have a good understanding of the analytic approach to solving problems. In addition, we have provided many systematic explanations throughout the text that will help instructors to reach the goals that they have set for their students. As always, we have taken particular care to create a book that students can read, understand, and enjoy, and that will help students gain confidence in their ability to use analytic geometry. To the Student, This book consists of two chapters, which cover analytical analysis of lines and circles respectively. Each chapter begins with basic definitions, theorems, and explanations which are necessary for understanding the subsequent chapter material. In addition, each chapter is divided into subsections so that students can follow the material easily. Every subsection includes self-test Check Yourselfproblem sections followed by basic examples illustrating the relevant definition, theorem, rule, or property. Teachers should encourage their students to solve Check Yourself problems themselves because these problems are fundemental to understanding and learning the related subjects or sections. The answers to most Check Yourself problems are given directly after the problems, so that students have immediate feedback on their progress. Answers to some Check Yourself problems are not included in the answer key, as they are basic problems which are covered in detail in the preceding text or examples. Giving answers to such problems would effectively make the problems redundant, so we have chosen to omit them, and leave students to find the basic answers themselves. At the end of every section there are exercises categorized according to the structure and subject matter of the section. Exercises are graded in order, from easy (at the beginning) to difficult (at the end). Exercises which involve more ability and effort are denoted by one or two stars. In addition, exercises which deal with more than one subject are included in a separate bank of mixed problems at the end of the section. This organization allows the instructor to deal with only part of a section if necessary and to easily determine which exercises are appropriate to assign. Every chapter ends with three important sections. The Chapter Summaryis a list of important concepts and formulas covered in the chapter that students can use easily to get direct information whenever needed. A Concept Check section contains questions about the main concepts of the subjects covered, especially about the definitions, theorems or derived formulas. Finally, a Chapter Review Test section consists of three tests, each with sixteen carefully-selected problems. The first test covers primitive and basic problems. The second and third tests include more complex problems. These tests help students assess their ability in understanding the coverage of the chapter. The answers to the exercises and the tests are given at the end of the book so that students can compare their solution with the correct answer. Each chapter also includes some subjects which are denoted as optional. These subjects complement the topic and give some additional information. However, completion of optional sections is left to the discretion of the teacher, who can take into account regional curriculum requirements. CHAPTER 1 SECTION 4: QUADRATIC EQUATIONS SECTION 1: ALGEBRAIC EXPRESSIONS A. QUADRATIC EQUATIONS . . . . . . . . .80 A. ALGEBRAIC EXPRESSIONS . . . . . . . . .10 B. SOLVING QUADRATIC EQUATIONS .81 1. Translating Phrases into Algebraic Expressions .10 1. Factoring Quadratic Equation . . . . . . . . . . . . .81 B. OPEN SENTENCES AND 2. The Square Root Method . . . . . . . . . . . . . . . . .82 EQUATIONS . . . . . . . . . . . . . . . . . . .15 3. Completing the Square . . . . . . . . . . . . . . . . . .83 C. LINEAR EQUATIONS 4. The Quadratic Formula . . . . . . . . . . . . . . . . . .85 IN ONE VARIABLE . . . . . . . . . . . . . . .19 SECTION 5: WRITTEN PROBLEMS 1. Equality and its Properties . . . . . . . . . . . . . . . .19 2. Solving Linear Equations . . . . . . . . . . . . . . . . .23 1. Number and Fraction Problems . . . . . . . . . . . .88 3. Solution Strategies: Combining Like Terms . . . .25 2. Age Problems . . . . . . . . . . . . . . . . . . . . . . . . .93 4. Solution Strategies: Collecting Variables on the 3. Work Problems . . . . . . . . . . . . . . . . . . . . . . . .96 Same Side of an Equation . . . . . . . . . . . . . . . .27 4. Percentage and Interest Problems . . . . . . . . . .100 EXERCISES 1.1 . . . . . . . . . . . . . . . . . . . . . . . .33 EXERCISES 1.4 . . . . . . . . . . . . . . . . . . . . . . .108 SECTION 2: INEQUALITIES CHAPTERREVIEW TESTS . . . . . . . . . . . . . . . .111 A. SOLVING INEQUALITIES IN ONE CHAPTER 2 VARIABLE . . . . . . . . . . . . . . . . . . . . .34 1. Inequalities in One Variable . . . . . . . . . . . . . . .34 SECTION 1: FONDAMENTALS OF 2. Graphing Inequalities on a Number Line . . . . .35 TRINGONOMETRY 3. Properties of Inequality . . . . . . . . . . . . . . . . . .37 A. ANGLES AND DIRECTION . . . . . . . .120 4. Solving Inequalities . . . . . . . . . . . . . . . . . . . . .41 5. Written Problems . . . . . . . . . . . . . . . . . . . . . . .45 1. The Concept of Angle . . . . . . . . . . . . . . . . . .120 6. Compound Inequalities . . . . . . . . . . . . . . . . . .47 2. Directed Angles . . . . . . . . . . . . . . . . . . . . . . .120 EXERCISES 1.2 . . . . . . . . . . . . . . . . . . . . . . . .50 3. Directed Arcs . . . . . . . . . . . . . . . . . . . . . . . . .121 SECTION 3: LINEAR EQUATIONS IN TWO B. UNITS OF ANGLE MEASURE . . . . . .123 VARIABLES 1. Grad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A. THE COORDINATE PLANE . . . . . . . . .51 2. Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 1. Coordinates on a Graph . . . . . . . . . . . . . . . . .51 3. Radian . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 2. The Rectangular Coordinate System . . . . . . . . .52 4. Converting Units of Angle Measure . . . . . . . .127 B. SOLVING LINEAR EQUATIONS IN TWO C. PRIMARY DIRECTED ANGLES . . . . .129 VARIABLES . . . . . . . . . . . . . . . . . . . .56 1. Coterminal Angles . . . . . . . . . . . . . . . . . . . . .129 1. Constructing a Table of Values . . . . . . . . . . . . .57 2. Primary Directed Angles and Arcs . . . . . . . . .131 2. Graphing Linear Equations . . . . . . . . . . . . . . .58 EXERCISES 2.1 . . . . . . . . . . . . . . . . . . . . . . .135 3. The Intercept Method . . . . . . . . . . . . . . . . . . . .61 SECTION 2: RIGHT TRIANGLE C. SOLVING SYSTEMS OF LINEAR TRINGONOMETRY EQUATIONS . . . . . . . . . . . . . . . . . . .64 A. TRIGONOMETRIC RATIOS . . . . . . . .137 1. The Graphing Method . . . . . . . . . . . . . . . . . . .64 2. The Elimination Method . . . . . . . . . . . . . . . . . .68 1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .137 3. The Substitution Method . . . . . . . . . . . . . . . . . .72 2. Special Triangles and Ratios . . . . . . . . . . . . . . .140 EXERCISES 1.3 . . . . . . . . . . . . . . . . . . . . . . . .79 B. TRIGONOMETRIC IDENTITIES . . . . .142 SECTION 2: ARITHMETIC SEQUENCES 1. Basic Identities . . . . . . . . . . . . . . . . . . . . . . . .142 A. ARITHMETIC SEQUENCES . . . . . . . .224 2. Simplifying Trigonometric Expressions . . . . . . .146 1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .224 3. Verifying Trigonometric Identities . . . . . . . . . .149 2. General Term . . . . . . . . . . . . . . . . . . . . . . . .225 4. Cofunctions . . . . . . . . . . . . . . . . . . . . . . . . . .152 3. Advanced General Term Formula . . . . . . . . . .227 EXERCISES 2.2 . . . . . . . . . . . . . . . . . . . . . . .155 4. Middle Term Formula (Arithmetic Mean) . . . . .230 SECTION 3:TRINGONOMETRY FUNCTIONS B. SUM OF THE TERMS OF AN ARITHMETIC OF REAL NUMBERS SEQUENCE . . . . . . . . . . . . . . . . . . .232 A. TRIGONOMETRIC FUNCTIONS . . . .157 1. Sum of the First n Terms . . . . . . . . . . . . . . . .232 1. The Sine Function . . . . . . . . . . . . . . . . . . . . .157 2. Applied Problems . . . . . . . . . . . . . . . . . . . . .236 2. The Cosine Function . . . . . . . . . . . . . . . . . . .159 EXERCISES 3.2 . . . . . . . . . . . . . . . . . . . . . . .241 3. The Tangent Function . . . . . . . . . . . . . . . . . . .161 4. The Cotangent Function . . . . . . . . . . . . . . . . .163 SECTION 3: GEOMETRIC SEQUENCES 5. The Secant and Cosecant Functions . . . . . . . .165 A. GEOMETRIC SEQUENCES . . . . . . . .247 B. CALCULATING TRIGONOMETRIC 1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .247 VALUES . . . . . . . . . . . . . . . . . . . . . .168 2. General Term . . . . . . . . . . . . . . . . . . . . . . . .248 1. Trigonometric Values of Quadrantal Angles . .168 3. Advanced General Term Formula . . . . . . . . . .250 2. Using a Reference Angle . . . . . . . . . . . . . . . .170 4. Common Ratio Formula . . . . . . . . . . . . . . . .251 3. Calculating Ratios from a Given Ratio . . . . . .174 5. Middle Term Formula (Geometric Mean) . . . . .252 4. Trigonometric Values of Other Angles . . . . . . .176 B. SUM OF THE TERMS OF A GEOMETRIC EXERCISES 2.3 . . . . . . . . . . . . . . . . . . . . . . .181 SEQUENCE . . . . . . . . . . . . . . . . . . .256 SECTION 4:TRINGONOMETRIC THEOREMS 1. Sum of the First n Terms . . . . . . . . . . . . . . . .256 AND FORMULAS 2. Applied Problems . . . . . . . . . . . . . . . . . . . . .260 A. TRIGONOMETRIC FORMULAS . . . . .185 C. INFINITE SUM OF A GEOMETRIC 1. Sum and Difference Formulas . . . . . . . . . . . .185 SEQUENCE (OPTIONAL) . . . . . . . . .262 2. Double-Angle and Half-Angle Formulas . . . . .190 1. Infinite Sum Formula . . . . . . . . . . . . . . . . . . .262 3. Reduction Formulas . . . . . . . . . . . . . . . . . . .198 2. Repeating Decimals . . . . . . . . . . . . . . . . . . . .263 EXERCISES 2.4 . . . . . . . . . . . . . . . . . . . . . . .205 3. Equations with Infinitely Many Terms . . . . . . . .264 4. Applied Problems . . . . . . . . . . . . . . . . . . . . .266 CHAPTER 3 EXERCISES 3.3 . . . . . . . . . . . . . . . . . . . . . . .268 SECTION 1: REAL NUMBERS SEQUENCES CHAPTERREVIEW TESTS . . . . . . . . . . . . . . . .273 A. SEQUENCES . . . . . . . . . . . . . . . . . .208 CHAPTER 4 1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .208 2. Criteria for the Existence of a Sequence . . . . .210 SECTION 1: CLOCK ARITHMETIC AND B. TYPES OF SEQUENCE . . . . . . . . . . .211 MODULA 1. Finite and Infinite Sequences . . . . . . . . . . . . .211 A. CLOCK ARITHMETIC 2. Monotone Sequences . . . . . . . . . . . . . . . . . . .212 AND MODULA . . . . . . . . . . . . . . . .280 3. Piecewise Sequences . . . . . . . . . . . . . . . . . . .214 1. Clock Arithmetic . . . . . . . . . . . . . . . . . . . . . .280 4. Recursively Defined Sequences . . . . . . . . . . . .215 2. The Concept of Modulus . . . . . . . . . . . . . . . .281 EXERCISES 3.1 . . . . . . . . . . . . . . . . . . . . . . .221 3. Clock Addition . . . . . . . . . . . . . . . . . . . . . . .282 B. OPERATIONS IN MODULAR ARITHMETIC . . . . . . . . . . . . . . . . . .284 1. Modular Addition . . . . . . . . . . . . . . . . . . . . .284 2. Modular Multiplication . . . . . . . . . . . . . . . . .286 3. Solving Modular Equations . . . . . . . . . . . . . .288 4. Other Operations in Modular Arithmetic . . . . .290 5. Applications of Modular Arithmetic . . . . . . . . .292 SECTION 2: BINARY OPERATIONS A. BASIC CONCEPT . . . . . . . . . . . . . . .294 1. Binary Operations . . . . . . . . . . . . . . . . . . . . .294 2. Using an Operation Table . . . . . . . . . . . . . . .295 B. PROPERTIES OF BINARY OPERATIONS . . . . . . . . . . . . . . . . . .297 EXERCISES 4.1 . . . . . . . . . . . . . . . . . . . . . . .301 CHAPTER 5 SECTION 1: BASIC CONCEPTS AND DEFINITIONS EXERCISES 5.1 . . . . . . . . . . . . . . . . . . . . . . .312 SECTION 2: STATISTICS A. BASIC CONCEPTS . . . . . . . . . . . . . .313 1. What is Statistics? . . . . . . . . . . . . . . . . . . . . .313 2. Collecting Data . . . . . . . . . . . . . . . . . . . . . . .314 3. Summarizing Data . . . . . . . . . . . . . . . . . . . .315 B. PRESENTING AND INTERPRETING DATA316 1. Bar Grap . . . . . . . . . . . . . . . . . . . . . . . . . . .317 2. Line Graph . . . . . . . . . . . . . . . . . . . . . . . . . .317 3. Circle Graph (Pie Chart) . . . . . . . . . . . . . . . .321 C. MEASURES OF CENTRAL TENDENCY324 1. Circle Graph (Pie Chart) . . . . . . . . . . . . . . . .324 2. Circle Graph (Pie Chart) . . . . . . . . . . . . . . . .325 3. Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326 4. Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 EXERCISES 5.2 . . . . . . . . . . . . . . . . . . . . . . .329 CHAPTERREVIEW TESTS . . . . . . . . . . . . . . . .330 Objectives After studying this section you will be able to: 1. Translate a phrase into an algebraic expression. 2. Describe the concepts of open sentence and equation. 3. Solve linear equations in one variable by using the properties of equality. 4. Solve general linear equations. 5. Understand how to apply the strategies of solving equations to problems. A. ALGEBRAIC EXPRESSIONS 1. Translating Phrases into Algebraic Expressions Algebra is a useful tool for solving some practical everyday problems. In order to use algebra, we need to know how to translate a problem into algebraic notation. Let us look at an example. Suppose you are fifteen years old now. In one year’s time you will be (15 + 1) years old. In two years’ time you will be (15 + 2) years old. In three years’ time you will be (15 + 3) years old. We can see that there is a pattern. We can write a more general expression: In x years’ time you will be (15 + x) years old. Here, x represents one or more numbers. x is called a variable. Definition variable A variableis a letter that is used to represent a numerical quantity. We often use a lower-case letter such as a, b, c, etc. for a variable. In the example above, xrepresents a number of years. xis a variable, and 15 + xis called an algebraic expression. Definition algebraic expression An algebraic expression is a combination of numbers, variables, operations and grouping signs. 10 Algebra 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.