EXPONENTS AND RADICALS GEOMETRIC FORMULAS xmxn(cid:2)xm(cid:3)n (cid:4)x(cid:4)m (cid:2)xm(cid:6)n Formulas for area A,perimeter P,circumference C,volume V: xn xmn (cid:2)xmn x(cid:6)n (cid:2)(cid:4)1(cid:4) Rectangle Box 1 2 xn xyn (cid:2)xnyn (cid:4)x(cid:4) n (cid:2)(cid:4)x(cid:4)n A(cid:2)l„ V(cid:2)l„h 1 2 ayb yn P(cid:2)2l (cid:3)2„ x1(cid:4)n(cid:2)(cid:2)nx(cid:3) xm(cid:4)n(cid:2)(cid:2)nx(cid:3)(cid:3)m(cid:2) (cid:2)nx(cid:3) m Q R (cid:2)nx(cid:3)y (cid:2)(cid:2)nx(cid:3)(cid:2)ny(cid:3) (cid:5)n(cid:4)(cid:6)x(cid:4) (cid:2)(cid:4)(cid:2)n(cid:4)x(cid:3) „ h (cid:2)m(cid:2)(cid:3)n(cid:3)x(cid:3)(cid:2)(cid:2)n(cid:2)(cid:3)m(cid:3)x(cid:3)(cid:2)(cid:2)mnx(cid:3) y (cid:2)n(cid:3)y „ l l SPECIAL PRODUCTS Triangle Pyramid 1x (cid:3)y22(cid:2)x2 (cid:3)2xy (cid:3)y2 A(cid:2)(cid:4)1(cid:4)bh V(cid:2)(cid:4)1(cid:4)ha2 2 3 x (cid:6)y2(cid:2)x2 (cid:6)2xy (cid:3)y2 1 2 x (cid:3)y3(cid:2)x3 (cid:3)3x2y (cid:3)3xy2 (cid:3)y3 1 2 x (cid:6)y3(cid:2)x3 (cid:6)3x2y (cid:3)3xy2 (cid:6)y3 h 1 2 h a FACTORING FORMULAS b a x2 (cid:6)y2(cid:2) x (cid:3)y x (cid:6)y 1 21 2 Circle Sphere x2 (cid:3)2xy (cid:3)y2(cid:2)1x (cid:3)y22 A(cid:2)(cid:5)r2 V(cid:2)(cid:4)4(cid:4)(cid:5)r3 3 x2 (cid:6)2xy (cid:3)y2(cid:2) x (cid:6)y2 C(cid:2)2(cid:5)r A(cid:2)4(cid:5)r2 1 2 x3 (cid:3)y3(cid:2) x (cid:3)y x2 (cid:6)xy (cid:3)y2 1 21 2 x3 (cid:6)y3(cid:2) x (cid:6)y x2 (cid:3)xy (cid:3)y2 r r 1 21 2 QUADRATIC FORMULA If ax2 (cid:3)bx (cid:3)c(cid:2)0,then Cylinder Cone (cid:6)b(cid:9)(cid:2)b(cid:3)(cid:3)2(cid:6)(cid:3)(cid:3)4a(cid:3)c(cid:3) V(cid:2)(cid:5)r2h V(cid:2)(cid:4)1(cid:4)(cid:5)r2h x(cid:2)(cid:4)(cid:4) 3 2a r INEQUALITIES AND ABSOLUTE VALUE h h If a(cid:7)band b(cid:7)c,then a(cid:7)c. r If a(cid:7)b,then a(cid:3)c(cid:7)b(cid:3)c. If a(cid:7)band c(cid:8)0,then ca(cid:7)cb. If a(cid:7)band c(cid:7)0,then ca(cid:8)cb. HERON’S FORMULA If a(cid:8)0,then B ⏐x⏐(cid:2)a means x(cid:2)a or x(cid:2)(cid:6)a. Area(cid:2)(cid:2)(cid:3)s s(cid:3)(cid:3)(cid:6)(cid:3)a(cid:3)s(cid:3)(cid:6)(cid:3)(cid:3)b(cid:3)s(cid:3)(cid:6)(cid:3)(cid:3)c(cid:3) 1 21 21 2 c a ⏐x⏐(cid:7)a means (cid:6)a(cid:7)x(cid:7)a. a(cid:3)b(cid:3)c where s(cid:2)(cid:4)(cid:4) ⏐x⏐(cid:8)a means x(cid:8)a or x(cid:7)(cid:6)a. 2 A C b DISTANCE AND MIDPOINT FORMULAS GRAPHS OF FUNCTIONS Distancebetween P x ,y and P x ,y : Linear functions: f x (cid:2)mx(cid:3)b 11 1 12 21 2 22 1 2 d(cid:2)(cid:2)(cid:3)1x(cid:3)2(cid:6)(cid:3)(cid:3)x(cid:3)12(cid:3)2(cid:3)(cid:3)(cid:3)1(cid:3)y2(cid:3)(cid:6)(cid:3)y(cid:3)12(cid:3)2 y y x (cid:3)x. y (cid:3)y. Midpointof P1P2: (cid:4)1 (cid:4)2, (cid:4)1 (cid:4)2 b a 2 2 b b LINES x x y (cid:6)y Slope of linethrough m(cid:2)(cid:4)2 (cid:4)1 Ï=b Ï=mx+b x (cid:6)x P x ,y and P x ,y 2 1 11 1 12 21 2 22 Power functions: f x (cid:2)xn 1 2 Point-slope equationof line y(cid:6)y (cid:2)m x(cid:6)x 1 1 12 y y through P x ,y with slopem 11 1 12 Slope-intercept equationof y(cid:2)mx(cid:3)b line with slopemand y-intercept b x Two-intercept equationof line x y (cid:4)(cid:4)(cid:3)(cid:4)(cid:4)(cid:2)1 x with x-intercept aand y-intercept b a b Ï=≈ Ï=x£ LOGARITHMS Root functions: f x (cid:2)(cid:2)nx(cid:7) 1 2 y(cid:2)log x means ay(cid:2)x y y a log ax(cid:2)x alogax(cid:2)x a log 1(cid:2)0 log a(cid:2)1 a a x x logx(cid:2)log x lnx(cid:2)log x 10 e log xy(cid:2)log x (cid:3)log y log (cid:4)x(cid:4) (cid:2)log x (cid:6)log y Ï=œx∑ Ï=£œx∑ a a a aayb a a log xb(cid:2)blog x log x(cid:2) logax Reciprocal functions: f x (cid:2)1/xn a a b log b 1 2 a y y EXPONENTIAL AND LOGARITHMIC FUNCTIONS y y x x y=a˛ y=a˛ a>1 0<a<1 1 1 Ï= Ï= 1 1 x ≈ 0 x 0 x Absolute value function Greatest integer function y y y y=loga x y y=loga x a>1 0<a<1 1 1 x 0 x 0 x x 1 1 Ï=|x| Ï=“x‘ COMPLEX NUMBERS CONIC SECTIONS y For the complex number z(cid:2)a(cid:3)bi Circles r the conjugateis z(cid:2)a(cid:6)bi x (cid:6)h 2(cid:3) y (cid:6)k 2 (cid:2)r2 the modulusis ⏐z⏐(cid:2)(cid:2)a(cid:3)2(cid:3)(cid:3)(cid:3)b(cid:7)2 1 2 1 2 C(h, k) the argumentis (cid:10),where tan (cid:10)(cid:2)b/a 0 x Im Parabolas bi a+bi x2 (cid:2)4py y2 (cid:2)4px |z| y y ¨ p>0 p<0 p>0 0 a Re p x p x Polar form of a complex number p<0 For z(cid:2)a(cid:3)bi,the polar formis Focus 0, p ,directrixy (cid:2)(cid:6)p Focus p, 0 ,directrixx (cid:2)(cid:6)p z(cid:2)r cos(cid:10)(cid:3)isin(cid:10) 1 2 1 2 1 2 y y where r(cid:2)⏐z⏐is the modulus of zand (cid:10)is the argument of z (h, k) De Moivre’s Theorem 0 x zn(cid:2)(cid:8)r cos(cid:10)(cid:3)isin(cid:10)(cid:9)n(cid:2)rn cosn(cid:10)(cid:3)isinn(cid:10) (h, k) 1 2 1 2 0 x (cid:2)nz(cid:3)(cid:2)(cid:8)r cos(cid:10)(cid:3)isin(cid:10)(cid:9)1(cid:4)n 1 2 y (cid:2)a x (cid:6)h 2(cid:3)k, y (cid:2)a x (cid:6)h 2(cid:3)k, (cid:2)r1(cid:4)n cos(cid:4)(cid:10)(cid:3)(cid:4)2k(cid:5)(cid:3)isin(cid:4)(cid:10)(cid:3)(cid:4)2k(cid:5) a (cid:7)0,1 h (cid:8)20, k (cid:8)0 a (cid:8)0,1 h (cid:8)20, k (cid:8)0 a n n b where k(cid:2)0,1,2,...,n(cid:6)1 Ellipses x2 y2 x2 y2 ROTATION OF AXES (cid:4)a(cid:4)2 (cid:3)(cid:4)b(cid:4)2 (cid:2)1 (cid:4)b(cid:4)2 (cid:3)(cid:4)a(cid:4)2 (cid:2)1 y y y Y P(x, y) Rotation of axes a a>b P(X, Y) formulas b a>b c x(cid:2)Xcos(cid:11)(cid:6)Ysin(cid:11) X y(cid:2)Xsin(cid:11)(cid:3)Ycos(cid:11) _a _c c a x _b b x _c _b ƒ _a 0 x Foci (cid:9)c, 0 ,c2 (cid:2)a2(cid:6)b2 Foci 0, (cid:9)c ,c2 (cid:2)a2(cid:6)b2 1 2 1 2 Angle-of-rotation formula for conic sections Hyperbolas x2 y2 x2 y2 To eliminate the xy-term in the equation (cid:4)(cid:4)(cid:6)(cid:4)(cid:4) (cid:2)1 (cid:6)(cid:4)(cid:4) (cid:3)(cid:4)(cid:4)(cid:2)1 a2 b2 b2 a2 Ax2(cid:3)Bxy(cid:3)Cy2(cid:3)Dx(cid:3)Ey(cid:3)F(cid:2)0 y y rotate the axis by the angle (cid:11)that satisfies a c b A(cid:6)C cot2(cid:11)(cid:2)(cid:4)(cid:4) _c c B _a a x _b b x POLAR COORDINATES _b _c _a y x(cid:2)rcos(cid:10) Foci (cid:9)c, 0 ,c2 (cid:2)a2(cid:3)b2 Foci 0, (cid:9)c ,c2 (cid:2)a2(cid:3)b2 1 2 1 2 P(x, y) P(r, ¨) y(cid:2)rsin(cid:10) r y r2(cid:2)x2(cid:3)y2 y ¨ tan(cid:10)(cid:2)(cid:4)(cid:4) x 0 x x This page intentionally left blank This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest. THIRD EDITION A LGEBRA AND T RIGONOMETRY ABOUT THE AUTHORS JAMES STEWART received his MS LOTHAR REDLIN grew up on Van- SALEEM WATSON received his from Stanford University and his PhD couver Island,received a Bachelor of Bachelor of Science degree from from the University of Toronto.He did Science degree from the University of Andrews University in Michigan.He research at the University of London Victoria,and received a PhD from did graduate studies at Dalhousie and was influenced by the famous McMaster University in 1978.He sub- University and McMaster University, mathematician George Polya at Stan- sequently did research and taught at where he received his PhD in 1978. ford University.Stewart is Professor the University of Washington,the Uni- He subsequently did research at the Emeritus at McMaster University and is versity of Waterloo,and California Mathematics Institute of the University currently Professor of Mathematics at State University,Long Beach.He is of Warsaw in Poland.He also taught at the University of Toronto.His research currently Professor of Mathematics at The Pennsylvania State University.He field is harmonic analysis and the con- The Pennsylvania State University, is currently Professor of Mathematics nections between mathematics and Abington Campus.His research field is at California State University,Long music.James Stewart is the author of a topology. Beach.His research field is functional bestselling calculus textbook series analysis. published by Brooks/Cole,Cengage Learning,including Calculus,Calculus: Early Transcendentals,and Calculus: Concepts and Contexts;a series of pre- calculus texts;and a series of high- school mathematics textbooks. Stewart,Redlin,and Watson have also published Precalculus:Mathematics for Calculus,College Algebra,Trigonometry,and (with Phyllis Panman) College Algebra:Concepts and Contexts. ABOUT THE COVER The cover photograph shows the Science Museum in the City of three-dimensional objects in two dimensions.Trained as both an Arts and Sciences in Valencia,Spain.Built from 1991 to 1996,it was engineer and an architect,he wrote a doctoral thesis in 1981 designed by Santiago Calatrava,a Spanish architect.Calatrava has entitled “On the Foldability of Space Frames,”which is filled with always been very interested in how mathematics can help him mathematics,especially geometric transformations.His strength realize the buildings he imagines.As a young student,he taught as an engineer enables him to be daring in his architecture. himself descriptive geometry from books in order to represent THIRD EDITION A LGEBRA AND T RIGONOMETRY J S AMES TEWART MCMASTER UNIVERSITY AND UNIVERSITY OF TORONTO L R OTHAR EDLIN THE PENNSYLVANIA STATE UNIVERSITY S W ALEEM ATSON CALIFORNIA STATE UNIVERSITY, LONG BEACH Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Algebra and Trigonometry,Third Edition © 2012, 2007Brooks/Cole, Cengage Learning James Stewart, Lothar Redlin, Saleem Watson ALL RIGHTS RESERVED. No part of this work covered by the copyright herein Acquisitions Editor: Gary Whalen may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, Developmental Editor: Stacy Green recording, scanning, digitizing, taping, Web distribution, information networks, Assistant Editor: Cynthia Ashton or information storage and retrieval systems, except as permitted under Editorial Assistant: Sabrina Black Section 107or 108of the 1976United States Copyright Act, without the prior Media Editor: Lynh Pham written permission of the publisher. Marketing Manager: Myriah Fitzgibbon Marketing Assistant: Shannon Myers For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706. Marketing Communications Manager: For permission to use material from this text or product, Darlene Macanan submit all requests online at www.cengage.com/permissions. Content Project Manager: Jennifer Risden Further permissions questions can be e-mailed to [email protected]. Design Director: Rob Hugel Art Director: Vernon Boes Print Buyer: Karen Hunt Library of Congress Control Number: 2010935412 ISBN-13: 978-0-8400-6813-2 Rights Acquisitions Specialist: ISBN-10: 0-8400-6813-1 Dean Dauphinais Production Service: Martha Emry Text Designer: Lisa Henry Brooks/Cole 20Davis Drive Photo Researcher: Bill Smith Group Belmont, CA 94002-3098 Copy Editor: Barbara Willette USA Illustrator: Matrix Art Services, Precision Graphics Cengage Learning is a leading provider of customized learning solutions with Cover Designer: Lisa Henry office locations around the globe, including Singapore, the United Kingdom, Cover Image: © Jose Fuste Raga/ Australia, Mexico, Brazil, and Japan. Locate your local office at photolibrary.com www.cengage.com/global. Compositor: Graphic World, Inc. Cengage Learning products are represented in Canada by Nelson Education, Ltd. To learn more about Brooks/Cole, visit www.cengage.com/brookscole Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com. Printed in the United States of America 1 2 3 4 5 6 7 14 13 12 11
Description: