energies Review Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy SandraLage1,†,‡,ZivanGojkovic2,†,ChristianeFunk2andFrancescoG.Gentili1,* 1 DepartmentofWildlife,Fish,andEnvironmentalStudies,SwedishUniversityofAgriculturalSciences, 90183Umeå,Sweden;[email protected] 2 DepartmentofChemistry,UmeåUniversity,90736Umeå,Sweden;[email protected](Z.G.); [email protected](C.F.) * Correspondence:[email protected];Tel.:+46-090-786-8196 † Theauthorscontributedequallytothework. ‡ Presentaddress:DepartmentofForestBiomaterialsandTechnology,SwedishUniversityofAgricultural Sciences,90183Umeå,Sweden. Received:17November2017;Accepted:14March2018;Published:15March2018 Abstract: AlgaearewithoutdoubtthemostproductivephotosyntheticorganismsonEarth;theyare highlyefficientinconvertingCO andnutrientsintobiomass. Theseabilitiescanbeexploitedby 2 culturingmicroalgaefromwastewaterandfluegasesforeffectivewastewaterreclamation. Algaeare known to remove nitrogen and phosphorus as well as several organic contaminants including pharmaceuticals from wastewater. Biomass production can even be enhanced by the addition of CO originating from flue gases. The algal biomass can then be used as a raw material to 2 producebioenergy;dependingonitscomposition,varioustypesofbiofuelssuchasbiodiesel,biogas, bioethanol, biobutanol or biohydrogen can be obtained. However, algal biomass generated in wastewaterandfluegasesalsocontainscontaminantswhich,ifnotdegraded, willendupinthe ashes.Inthisreview,thecurrentknowledgeonalgalbiomassproductioninwastewaterandfluegases issummarized;specialfocusisgiventothealgalcapacitytoremovecontaminantsfromwastewater andfluegases,andtheconsequenceswhenconvertingthisbiomassintodifferenttypesofbiofuels. Keywords: algae;biofuels;CO ;fluegases;nitrogen;phosphorus;wastewater 2 1. Introduction World energy demand is increasing continuously due to industrialization, technology development and population growth, and is expected to reach 9.2 billion by 2050 [1]. In 2015, the world’s total primary energy was supplied by fuel petroleum (that accounted for 31.7%), coal (28.1%), natural gas (21.6%), biofuels and waste (9.7%), nuclear (4.9%), hydro (2.5%) and the combinationofgeothermal,solar,wind,tidal/wave/ocean,heatandothers(1.5%)[2]. Acontinuous dependenceonfossilfuelswillraiseenergypricesascrudeoilreservesdiminish. Energybasedon fossilfuelsmight,therefore,beeconomicallyunsustainableinthefuture[3],butevenmoreimportant isitsfootprintonourclimate:worldwidereductionsinglobalgreenhousegasemissions(GHG)willbe essentialtoavoidtheworstconsequences. GHGsarethemaincauseofglobalwarmingandmeltingof thepoles,andtheyalsoleadtothelossofmarinebiodiversitythroughoceanacidification. Theoceans havebeenfoundtoabsorbapproximatelyone-thirdoftheanthropogeniccarbondioxide(CO )emitted 2 eachyear,whichthenisdissolvedandgraduallyreducesthepHofthewater[4]. Thus,theuseof renewableenergyisessentialifwewanttosustaintheEarthforfuturegenerations. However,tobea viablereplacementforfossilfuel,thesourceofrenewableenergyhastobeeconomicallycompetitive, shouldbeproducedatamountsabletomeetenergydemand, anditsproductionhastoprovidea net energy gain [3]. By 2020, the European Union (EU) countries are required to provide 20% of Energies2018,11,664;doi:10.3390/en11030664 www.mdpi.com/journal/energies Energies2018,11,664 2of30 thefinalenergyconsumedfromrenewablesources[5];56%oftherenewableenergysupplyinthe EUshouldoriginatefrombiomass[6]. TheEnergyStrategy2020oftheEuropeanCommissionhas givenalong-termtargetfortheEUandotherindustrializedcountriesresultinginan80–95%cutof GHGemissionsby2050[7]. Additionally,theUnitedNationsParisAgreementproposesaworldwide reductionto40GtCO emissionequivalentsinsteadofthe55Gtaimedatby2030. 2 The term biomass covers all organic material in non-fossil form originating from land- and water-based vegetation as well as all organic wastes [8]. Biomass is a complex mixture consisting mostlyofcarbohydrates,lipids,lignin,proteinsandorganicacids[9]. Contrarytofossilfuels,biomass is a source of clean energy with a negligible content of sulfur, N (nitrogen) and ash, resulting in lowemissionsofsulfurdioxide(SO ),nitrogenoxides(NO )and,importantly,theCO emissionis, 2 x 2 atleast,theoreticallynet-zero[10]. Nevertheless,gainingenergyfrombiomassfeedstock,originating from agriculture, forest lands or other ecosystems, has ecological and economic impacts [11,12]. The biomass is usually either burnt to produce electricity and thermal energy, or used for the productionoftransportationfuels,so-calledbiofuels[13]. Biofuelsaregenerallyclassifiedinthree categories: (i)first-generationbiofuelsoriginatefrombiomassthatisgenerallyedible(i.e.,food-crop feedstock),mainlyconsistingofsugar,starch,andvegetableoil;(ii)second-generationbiofuelsare bio-basedproductsthatcomefromnon-foodfeedstock, suchaslignocellulosicagricultural, forest feedstocksandmunicipalsolidwastes;and(iii)third-generationbiofuelsareproducedfrommicroalgal biomass[14]. Theexpansionoffirst-generationbiofuelsandtheirdirectcompetitionwithfood-crop productionforlandareahasnegativelyimpactedtheenvironment; GHGemissionswereactually raised from changes in land usage and biomass-conversion systems; pollutants were emitted and waterdepleted[3,15–18]. Notonlydidbiodiversitydecrease,butalsoglobalfoodpricesincreased dramatically [12,19]. The production of second-generation biofuels, instead, has the prospective advantagesofconsumingwasteresiduesandusingabandonedland,thuspromotingtheimprovement ofeconomicconditionsinemerginganddevelopingregions. However,currently,theproductionof suchfuelsisnotcost-effective,andtechnicalhitcheshavetoberesolvedbeforetheirpotentialcan berealized[20,21]. Thegrowthofsecond-generationbiofuelcropscouldalsobecomeunsustainable on a long-term basis when they compete with the plantation of food crops for available land [22]. Forboththeproductionoffirst-andsecond-generationbiofuels,largeareasareneededtocultivate the crops, and hence they are not a viable alternative to fossil fuels, as the produced volumes cannotcoverourglobalfueldemand[23,24]. Therefore,theexploitationofmicroalgaetogenerate third-generationbiofuelsseemstobeafeasiblealternativeforproducingrenewableenergy,overcoming thedisadvantagesoffirst-andsecond-generationbiofuels[25,26]. Microalgae have much higher growth rates and productivities than conventional forest or agriculturalcropsandotheraquaticplants. Theycansynthetizelipidsinconcentrationsupto70% dry-weight biomass, and exposed to nutrient- or other environmental stress their lipid amounts can even be up to 90% [25–28]. Microalgae have a very short harvesting cycle compared to crop plants, which are generally harvested once or twice per year; plus, microalgae can grow all year round(dependingonspeciesandcultivationconditions),allowingseveralcontinuousharvestswith significantly increased yields [29]. Thus, the yield of microalgal oil per area may substantially exceed the yield of the best oilseed crops [25,30]. It is estimated that microalgae can produce up to 94,000 L biofuel per ha per year, while corn only yields about 560 L per ha annually [31]. Moreover, the aquatic growth of microalgae in tanks or bioreactors requires less land area: up to 297 or 770 times less than soybean or corn crops, respectively [25]. Microalgae require less freshwaterthanterrestrialcrops,whichreducesthepressureonfreshwatersources. Dependingon the species, they even can grow in marine, brackish and/or wastewater, which are unsuitable for humanconsumption. Microalgalculturesdonotrequiretheapplicationofherbicidesorpesticides. Differentspeciesareadaptedtoliveinabroadvarietyofenvironmentalconditions,allowingculturing in various environments, contrary to terrestrial feedstocks [30,32]. In addition, different types of renewablefuelssuchasbiodiesel,methane,hydrogenorethanolcanbeproducedfrommicroalgal Energies2018,11,664 3of30 biomass[25,30,33]. Biodieselfrommicroalgalbiomasshasbeenshowntoperformaswellaspetroleum diesel, while at the same time its emissions of particulate matter, CO, hydrocarbons, and SO are x reduced[34]. Somemicroalgaespeciesevenproducehigh-valuecompounds,suchaspolyunsaturated fatty acids, natural dyes, polysaccharides, pigments, antioxidants, bioactive compounds, and/or proteins,whichcanpotentiallyrevolutionizetheindustriesofcosmetics,pharmaceuticals,nutrition, foodadditivesandaquaculture[26]. From an ecological and economic perspective, it is particularly interesting the possibility of culturingmicroalgaeinwastewater,allowingthebio-treatmentofsewagecoupledwiththeproduction ofpotentiallyvaluablebiomass,andatthesametimereducingGHGemissions[35]. Microalgaeare abletotakeupammonium,nitrateandphosphatefromwastewater. Asphotosyntheticorganisms, they further are able to transform CO from flue gases into biomass [36], thereby reducing CO 2 2 emissions,themajorGHG.Withourcurrenttechnology,large-scalebiofuelproductionfromalgae seemsonlytobeeconomicallyfeasiblewhencoupledwithwastewatertreatment[37]. Theproduction costs of algal biomass using a 100 ha open pond system were estimated to be €4.95 per kg [38]. Evenwithanall-yearoperationandtheoptimisticassumptionoflipidstobe35%ofthebiomass[39], the price of crude algae biomass currently is still not economically feasible. However, combining algalbiomassproductionwithtertiarywastewatertreatmentwillcreatebettereconomicprospects. Manyreviewscombinethecurrentknowledgeonthetopic;inthisreview,wewill,therefore,focusonly onthelatestliterature.Wastewaterasculturemediumisacost-effectivesolutionforrecyclingnutrients, andtheneedforadditionalNandP(phosphorus)sourcesisestimatedtodecreasebyabout55%[40]. This review will focus on our current knowledge about culturing microalgae in different types of wastewaterandfluegases,thevariousmicroalgalspeciesadaptedtogrowinwastewater,anditwill summarizeresearchfocusingontheconversionofalgalbiomass. 2. TheCompositionofWastewaterandFlueGases Depending on its source, wastewater is classified as municipal, agricultural or industrial. Althoughmicroalgaehavebeenusedforwastewatertreatmentsincethelate1950s[41],atpresent the chemical processing of wastewater or the manufacture of activated sludge are still the most common wastewater-treatment methods [35]. Removal of N and P is an important requirement of wastewater treatment; otherwise, if discharged to water systems, these nutrients will cause eutrophication of aquatic ecosystems, potentially endangering human health, biodiversity and ecosystemsustainability[42,43]. Nitrogenispresentinthewastewaterinfluentasammonia(NH +), 4 organicallyboundnitrogenorevennitrite(NO −)ornitrate(NO −). Phosphorusispresentinboth 2 3 thewastewaterinfluentandeffluentprimarilyintheformofphosphates(PO 3−). Althoughmunicipal 4 andindustrialwastewatersareusuallytreatedbeforetheirreleaseintotheenvironment,agricultural wastewaterderivedfromanimalmanureisoftendirectlyspreadoverfeedstocklandsasfertilizer, anditcancontainNandPconcentrationsof>1000mgL−1 [44]. Cropsarenotabletofullyabsorb thenutrientsprovidedbythemanure,andthustheexcessnutrientswillbewashedoff,resultingin eutrophicationofreceivingwaters. Agriculturalrunoffcanfurthercontainherbicides,fungicidesand insecticides. Municipalwastewatercanalsocontainmultipleinorganicsubstancesfromdomesticand industrialorigin,comprisingseveralheavy-metalpollutantssuchasarsenic,cadmium,chromium, copper,lead,mercuryandzinc[45]. Comparedtoagriculturalandmunicipalwastewater,thereisless NandPinindustrialwastewater. Ontheotherhand,industrialwastewatermaycontainhighlevels ofheavy-metalpollutantsandorganicchemicaltoxins(hydrocarbons,biocides,andsurfactants)[46]. Nevertheless,itscompositionisextremelyvariabledependingontheindustrialsector. Commonly,wastewatertreatmentisperformedintwoorthreestagesasfollows: (i)theprimary treatment removes large particles through grids or sedimentation; (ii) the secondary treatment diminishes the biochemical oxygen demand (BOD) by oxidizing organic compounds and NH +. 4 Thistreatmentisoftencarriedoutinaeratedtanksusingbacteriathatdegradestheorganicmaterial andprotozoathatgrazesonthebacteria,anditresultsinactivatedsludge. Theorganicmaterialis Energies2018,11,664 4of30 thenconvertedtoCO andwater;(iii)tertiarywastewatertreatment,i.e.,thelasttreatmentpriorto 2 dischargingthewaterintotheenvironment,removesmainlytheinorganiccompoundsincludingN andP[47]. Nisusuallyremovedinatwo-step-process, includingnitrificationanddenitrification; NH + is first oxidized to nitrate by nitrifying bacteria in aerobic reactors, and thereafter in anoxic 4 reactors it is converted to nitrogen gas (N ) by denitrifying bacteria. Removal of P is achieved by 2 chemicalprecipitationwithaluminumorironsaltstoformaluminumorferricphosphate. Thesesalts areusuallyaddedinexcesstoovercomenaturalalkalinity[47]. Alternatively,Pisadsorbedtofilter materialscontainingpositivelychargedsurfaces[48]ortakenupbybacteriaexposedtoalternating aerobicandanaerobicconditionsinaprocesscalledenhancedbiologicalphosphorusremoval[47]. Unfortunately,removedNandPcannotbefullyrecycled,andinsteadareburiedinlandfillsorfurther treatedtogeneratefertilizers[49]. Boththeproductionoffertilizersforfeedstockcultivation,andtheremediationofwastewater wheretheremainingoffertilizersendup,havehighcapitalandenergycosts[11,50]resultinginawaste ofnutrients. ThisisofmajorconcernastheindustrialproductionoffertilizersreliesheavilyonNfrom theenergy-intensiveHaber–Boschprocess(whichconsumesaround1%ofglobalenergyproduction); Pisderivedfromtheminingofphosphaterock,anon-renewableactivitythatisestimatedtoleadto depletionoftheEarth’sphosphorussupplywithin50–100years[51].Microalgaeusedforthetreatment ofwastewater,therefore,provideanexcellentalternative,becausethesephotosyntheticorganisms assimilateN,PandCduringtheirgrowth,thenutrientscanthenberecycledandusedasbio-fertilizer. Theinorganicnutrientspresentinwastewatersprovidecost-effectivemediaformicroalgalcultivation andatthesametimerecyclewater,whichreducestheoverallwaterfootprintofbiofuelproduction frommicroalgalbiomass[26,37,40]. Contrarytoconventionalwastewatertreatment,thetreatmentof wastewaterwithmicroalgaedoesnotcreateadditionalpollution,andthereforeitoffersanecologically safe,cheapandefficientwayofremovingnutrients[52]. TheconcentrationsofNandPpresentinwastewaterdifferconsiderablydependingonitstype andthestageofitstreatmentprocess[53]. Municipalwastewater(alsocalledsewage)hasrelatively low amounts of total N and P; concentrations are around 10–100 mg L−1 [44]. After secondary treatment, total N and P diminish to ranges of 20–40 mg L−1 and 1–10mg L−1, respectively [54]. These concentrations are highly suited for microalgal cultivation. Sewage contains N and P in a ratioof11to13(calculatedonthebasisofNO − andPO 3−)[55]. AnN:Pratioof16originallywas 3 4 widelyacceptedasoptimalforalgalgrowth[55–58],basedontheempiricalformulaC H O N P 106 181 45 16 describingthechemicalcompositionofalgae[59]. Thetypicalalgalbiomasscontains6.6%Nand 1.3% P in dry weight [60] with a molar N:P ratio of 11.2, a composition similar to that found in wastewater. BasedontheNandPcontentfoundinbiomass,onecanassumethatalgaeculturesin wastewatercanproduce0.3–1.15gL−1ofdryweight. Followingthisassumption,eachkilogramof algaeproducedinwastewatershouldhaveassimilatedapproximately66gofdissolvedNand13g ofP,correspondingto0.7–3.0m3 ofcleanedwastewater. AtlowN:Pratios,microalgaeareableto assimilatePinexcess(luxuryuptake);thenutrientisthenstoredwithinthecellsinsidethegranulesin theformofpolyphosphate[56,61]andcanbemetabolizedincaseofPlimitation. LuxuryuptakeofP inalgaeincreasestheircleaningcapacityofwastewater. Nitrogenlimitationintheculturemedium can further lead to N starvation, a recognized stress factor used to promote lipid accumulation in algae[27,32,62,63]. Thegrowthofalgaeinwastewater,therefore,allowstherecyclingofNandPions andatthesametimeitisaneffectivewaytoproducebiofuelatdecreasedcost[35]. Fluegasesfromburningnaturalgasandcoalcontain5–6%and10–15%CO ,respectively[36,64]. 2 InadditiontoCO , fluegasesmaycontainmorethan100differentcompounds, includingseveral 2 noxiousgasessuchasnitrogenoxides(NO ,withnitricoxideandnitrogendioxidebeingdominant) x andSO ,aswellasN ,H O,O ,unburnedcarbohydrates(C H ,suchasmethaneandbutane),CO, x 2 2 2 x y heavymetals,halogenacidsandparticulatematter[65]. InordertodecreaseCO emissionsfromfluegases, severalCO sequestrationstrategieshave 2 2 beenimplementedglobally. Carboncaptureandstorage(CCS)methodologieshavebeenwidelyand Energies2018,11,664 5of30 intenselystudied,andtakeplaceinthreesteps: CO capture,CO transportationandCO storage. 2 2 2 CO isstoredbyabsorption,adsorption,gas-separationmembranes,orcryogenicdistillation. ThisCCS 2 processisusuallycarriedoutatfacilitiesthatdischargelargeamountsofCO intotheatmosphere 2 (e.g.,cement-manufacturingfacilitiesandpowerplants)daily[66,67]. ThegasmixturerichinCO is 2 compressedtoasupercriticalfluidorliquid,whichisthentransportedandstoredindeepoceanicor geologicaltrenches,orismineralized[68]. AlthoughCCSmethodologiesmeettheirobjectives,they areonlyshort-termsolutionswithnumerouschallengesassociated,i.e.,highcosts,energyandspace requirementsandpotentialCO leakageovertime. Rock-weatheringenhancementisamethodrelying 2 onphysicalandbiologicalpropertiestoreduceatmosphericCO ;however,thereisuncertaintyaboutits 2 timerange.Alternatively,biologicalstrategiestocaptureCO arebasedonenhancingphotosynthesison 2 ourplaneteitherbyCO afforestation,oceanfertilization,ormicroalgalcultivation[69].Theseprocesses 2 areaneconomicallyandenvironmentallyviableoptiontobeexplored,consideringthatphotosynthesis notonlycapturesCO butevenreleasesoxygenasasideproduct. Althoughterrestrialplantsareable 2, tosequesterlargeamountsofCO fromtheatmosphere,photosynthesisperformedfromforestsonly 2 accountsfor3–6%ofcarbonannuallyfixedontheplanet,whereasseagrass,algaeandcyanobacteria areresponsibleforapproximately40%[70]. Duetothegreatphotosyntheticefficiencyofmicroalgae, whichis10timeshigherthatofterrestrialplants,theircultivationprovidesthemostpromisingand environmentallysustainablebiologicalCO captureprocess[36]. 2 3. MicroalgalWastewaterReclamationandBiomassProduction Successful microalgal cultivation on an industrial scale using wastewater and flue gases will depend on the selection of excellent microalgal strains from either natural screening or genetic engineering. Strainsisolatednearpowerorwastewater-treatmentplantsmaybemoretolerantthan othernativespecies. Oneshouldkeepinmindthatdifferentspeciesvaryconsiderablyintoleranceand productivity. Tediousselectionproceduresarerequireddependingonthelocationofthealgalfarm, theoriginofwastewater,andthepurposeofthebiomass.Manyexcellentrecentreviewssummarizethe useofvariousmicroalgae;inthissection,wethereforewillreferonlytothemostrecentpublications. 3.1. AlgalGrowingRegimesandPhysiologytoIncreaseTargetMacromolecules Thecommontermalgaereferstoalargegroupofaquaticphotosyntheticorganisms,andincludes eukaryoticmacro-andmicroalgaeaswellasprokaryoticcyanobacteria. Themajoralgalgroupsarethe following: cyanobacteria(Cyanophyceae),greenalgae(Chlorophyceae),diatoms(Bacillariophyceae), yellow-green algae (Xanthophyceae), golden algae (Chrysophyceae), red algae (Rhodophyceae), brownalgae(Phaeophyceae)anddinoflagellates(Dinophyceae). Greenalgaeare,withoutanydoubt, themostimportantgroupofalgaeusedinvariouswastewatertreatmentprocesses. ThisChlorophyta phylumincludesabout6000generaofapproximately10,000speciesofmicroscopicandmacroscopic eukaryoticalgae. Allthesespeciescontainchloroplastssurroundedbytwoenvelopemembranesand aninternalmembranecalledthylakoids,whichispartlystacked(grana);thephotosystemslocated insidethethylakoidmembranecontainchlorophyllaandb. Starchdepositsinsidetheplastidsare themainpolysaccharidereserve[71]. Themajorityofspeciesusedinwastewater-treatmentprocesses belongtothegenusChlorellaandScenedesmus,whichareparticularlytoleranttoharshenvironment andhighlevelofnutrients. Basedontheuseofenergyandcarbonsource, algaeareabletophotoautotroph, heterotroph, photoheterotrophormixotrophgrowth. Inphotoautotrophgrowth,algaeuselightasanenergysource andinorganiccarbonasacarbonsource;duringheterotrophmetabolismthesourceofenergyand carbonareorganiccompounds. Photoheterotrophgrowthallowslighttobetheenergysourceand organic carbon the source of carbon; and during mixotroph metabolism, algae can use both light andorganiccompoundsasasourceofenergyandbothinorganicandorganiccarbonasasourceof carbon[72]. Dependingonthechosengrowthregime,thealgalbiomasscompositionwilldiffer[73], whichshouldbeconsideredwhenspecificmacromoleculessuchaslipidsorcarbohydratesarethe Energies2018,11,664 6of30 targetproducts. Commonlyfortheproductionofbiodieselahighamountofalgallipidsisneeded, whilebiomasswithahighportionofcarbohydratesisimportantfortheproductionofbioethanol, biobutanolandbiohydrogen. Insomestudiesthemixotrophicgrowthinthepresenceofbothorganicandinorganiccarbon has been shown to be the most productive for achieving a high algal growth rate and final biomass[72,74,75]. Hence, theorganicandinorganiccarbonpresentinwastewaterandfluegases couldpotentiallyresultinhighbiomassproductionduringmixotrophicgrowth. Severalcultivation methods have been developed with the aim of increasing the algal cell content with energy-rich macromolecules(lipidsandcarbohydrates). Exposingthecellstostresshasbeenshowntobehighlyeffectiveatincreasingtheconcentration oftargetmacromolecules. Astresscanbeproducedbyalteringeitherchemicalorphysicalparameters intheculture. Chemicalparametersusuallyincludenutrientsofthegrowthmedium: carbon,nitrogen, phosphorus,sulphur,ironorsaltstress(sodiumchloride);whilephysicalparametersincludelightor temperature[73]. TheamountofCO presentasaninorganiccarbonsourceaffectstheconcentrationandcellular 2 localizationofstarch; aChlorellastraingrownathighCO concentrations(3%inair)storedstarch 2 mainly in the stroma, while during growth at low CO level (air level) starch was stored in the 2 pyrenoids[76]. Hence,algaegrowninthepresenceoffluegasesthatcancontainconsiderablyhigh amountsofCO mightbeaffectedintheirstarchaccumulationorcellularstorage-localization. 2 Nitrogen deprivation is one of the most frequently used parameters to increase the lipid content[32],andcarbohydratecontentofalgalcells[77]. Phosphoruslimitationwasshowntoincreasethelipidcontentinalgalcells[32]; whilePand sulphurlimitationincreasedstarchcontentinChlorellacells,althoughinthecaseofP,thiswasonlyfor averylimitedperiodoftime,afterwhichitdecreasedagain[77]. Somealgalspeciesaccumulatecarbohydratesathighlightintensity[73]. However,weshould bearinmindthatalgalbioreactorsforwastewatertreatmentoftenusenaturalirradiation,whichcannot be manipulated and is weather dependent. One way to influence natural light intensity available tothealgaeisbychangingreactorconfiguration. Infieldtrials,ithasbeenshownthattheincrease of sunlight together with the limitation of nitrogen resulted in very high lipid productivity [32]. Temperature has been shown to affect the fatty acid composition of the lipids; low temperature stimulatesthebiosynthesisofunsaturatedfattyacids[78]thatimprovefuelfluidity,butdecreaseits oxidationstability. 3.2. MicroalgaeStrainsUsedforWastewaterReclamation Themajorityofspeciesusedinwastewater-treatmentprocessesbelongstothegenusChlorellaand Scenedesmus,whichareparticularlytolerant.ThegenusChlorellawithmorethan100unicellularmembers isbeststudiedamonggreenmicroalgae; theunicellularalgaeconsistofsmallroundcellsprotected byahemicellulose-containingcellwall,providingrigidity[79].Chlorellaspeciesarefastgrowing,very resistantandeffectiveinremovingNandPfromdifferentwastewaterstreams[58]. Thedownside ofusingChlorellaspeciesinwastewatertreatmentcanbetheirsmallsizeandhighstabilityinliquid cultures,whichincreasesthecostsofharvestingandbiomassseparation.Scenedesmusspeciesperform verywellinwastewater-treatmentprocesses. Thegenusiscomprisedofapproximately70colonial, greenmicroalgaespecies;Scenedesmuscellsare5–8µmwide,twiceaslong,andform2to16cell-colonies withpolesofterminalcellsequippedwithasinglespine[80].Besideculture-collectionstrains,locally isolatedstrainsandmixedculturescanbesuccessfullyimplementedinwastewatertreatment[81–83]. 3.3. MonocultureVersusCommunity Analgalmonocultureconsistsofasinglestrainpreciselyselectedtoproduceadesiredcompound withmaximalyield[84]. Algalmonoculturescultivatedinnon-sterilesystemslikeopenponds,using pretreated conventional culture medium, are susceptible to contamination by wild strains unless Energies2018,11,664 7of30 additionalmeansofcontrolareutilized[55]. Inwastewater,whichcontainsmanymicroorganisms,itis verydifficulttomaintaintheinoculatedstrainasamonocultureforlongerperiodsbeforetheculture willbeovertakenbyotheralgaepresentintheenvironment[55]. Therefore,monoculturesofhigh lipid-producingstrainsarelikelytobeout-competedbyfastergrowingspecies[85],dependingon manyenvironmentalandbiologicalparameters. Maintainingthedissolvedoxygen(DO),acertainpH, thecultureretentiontimeanddilutionratesatcertainvaluesaresomeofthepossiblesolutionsfavoring thegrowthofthedesiredspecies. However,thereasonwhyacertainalgaestrainisdominantover anotherisstillnotfullyunderstood[55]. Locallyisolatedstrainsfromwastewaterpondshavebeen showntoperformbetterinwastewatertreatmentthanstrainsfromculturecollections[81,82,86,87]. Also, algae consortia have been found to be more stable than monoculture [81,82]. The shift in theculturecompositionfromselectedspeciestoamixedculturewillinfluencegrowthparameters aswellastheexpectedfinalbiomassconcentrationanditslipidcontent. However,oneshouldkeep in mind that mixed cultures also accumulate lipids; if biofuel is the desired product, the biomass production,therefore,mightstillbesatisfactory[55]. Inordertomaximizetheperformanceofeach strain,thechemicalcompositionofthewastewatershouldbeanalyzedindetailpriortoitsuseasa mediumformicroalgalcultivation[87]. 3.4. ControlofGrazers Notonlymicroorganisms,butgrazersarealsoverycommoninopenpondculturesofwastewater. Grazerscanbecontrolledthroughphysicalandchemicaltreatment. Anapplicationofe.g.,10mgL−1 quininechloridetoacontaminatedoutdoor-growingalgaemassculturecancompletelyremovegrazers withinashorttime[88]. However,inwastewatertreatmentanyadditionofchemicalsisunsuitable foreconomicreasonsaswellastoavoidsecondarywatercontamination. AdjustingthepHtoahigh valueof11forashortperiodoftimewassuggestedtobeanefficientmethodtoremovemostgrazers, especiallyinwastewatertreatment,whichalreadycontainshighlevelsofammonia[55]. Obviously, theselectionofrobustalgaestrainsisthebestsolution;inamixedculturewithinvasivealgaespecies, thehighgrowthrateswillenablethealgaetowithstandalowpopulationofgrazers(withmuchlower growthrates). 3.5. EnhancedLipidProductionDuringWastewaterTreatment Thetotalpriceofcrudealgalbiofuelproductionusinglarge-scaleopen-pondcultivationsystems wasestimatedtobe€24perL($109pergal),whichisfarabovethecostsofproducingcommercial petrol diesel [89]. Profitable crude algal biofuel production will require the development of algae strainsandconditionsforculturethatallowtherapidproductionofalgalbiomasswithhighlipid contentandminimalgrowthofcompetingstrains.Nevertheless,couplingtheutilizationofwastewater and flue gases to microalgae production is an important part of the development process, since itdecreasesproductioncosts,provideswastewaterbioremediationandreducesaircontamination. Large-scale cultivation of algae for lipid and biofuel production requires the availability of space, water,fertilizers,sunlightandCO . Theemploymentofatwo-stagecultivationstrategyaswellasthe 2 useofanative,mixedculturehasbeenrecommendedtoenhancelipidaccumulationandeconomic biofuelproductioninwastewater[90]. A combined process culturing Chlorella vulgaris on wastewater centrate (effluent generated throughdewateringactivatedsludge,whichderivedfromsecondarywastewatertreatment)withthe additionofwasteglycerol(derivingfrombiofuelproduction)resultedinsignificantremovalofNand Pandinbiomasswith27%oftotallipids[91]. StrainsofChlorellavulgarisCICESEandChlorellavulgaris UTEXwerefurtherabletoremoveallavailableNandPfrommunicipalwastewaterandproduced biomasswithalipidcontentof20.5–25.7%perdryweightafter21daysofcultivation[92]. Toenhancelipidaccumulationinthebiomass,themostcommonapproachisexposingthealgae tonutrientstarvationunderphototrophicconditions[90]. Nitrogenstarvationiseasytoachievein open-pondculturesandwillleadtolipidaccumulation;itisdependentonthebiomassconcentration Energies2018,11,664 8of30 atthestartofstarvation,thelightavailability,andthephysiologicalstateoftheculture[93]. Wuand coworkers[94]demonstratedthatindustrialtextilewastewatercouldbeusedforgrowthandlipid accumulationofChlorellasp.withchemicaloxygendemand(COD)removalefficiencyof75%.Thealgal biomasscontained20%offattyacidsupon7daysofcultivationintextilewastewatersupplemented withK HPO andureaatpH10withaeration. Álvarez-Diazandcoworkers[95]selectedstrainsof 2 4 Chlorellavulgaris,ChlorellakessleriandScenedesmusobliquusbasedontheirabilitytoproducelipids whencultivatedinmunicipalwastewateraftersecondarytreatment. Scenedesmusobliquusproduceda biomassconcentrationof1.4gL−1withlipidcontentof37%andalipidproductivityof29.8mgL−1d−1, whileC.vulgarisreachedthehighestbiomassproductivity(0.107gL−1 d−1)andalipidcontentof 17.23%,correspondingtoalipidproductivityof0.184gL−1d−1. ThelipidqualityoftwoBotryococcusbrauniistrainsgrowninmunicipalwastewaterwastested beforeandaftertreatmentintheaerationtanks[96]. After10daysofcultivation,thelipidcontentin pretreatedandtreatedeffluentwas24%and18%,respectively,withNremovalefficienciesof63%and 62%forB.brauniiLB572and61%and65%forB.brauniiIBLC116, respectively. TheremovalofP was100%inallexperiments. Accordingtotheauthors, Botryococcusisapotentiallipidsourcefor high-qualitybiofuelproductionduetoitspredominanceofsaturatedfatty-acids[96]. Shen and coworkers [83] studied 20 microalgal strains isolated from a municipal wastewater treatmentplantfortheirabilitytotreatwastewaterandaccumulatelipidsintheirbiomass. Onestrain of Botryococcus sp. NJD-1 was selected as the best candidate strain for biofuel production (up to 61.7%lipidcontent)andremovalofpollutants(upto64.5%,89.8%and67.9%forN,Pandtotalorganic carbon[TOC])inpristinewastewater. 3.6. MicroalgaeUsedinWastewaterandFlue-GasTreatmentofDifferentOrigin The removal of N and P is the primary objective of wastewater treatment by algae. Secondary objectives are the removal of different bioactive contaminants and xenobiotics from wastewater. Treatedwastewaterhastobeseparatedfromthesuspendedcultureandcanbereleasedif itcomplieswiththeregulations. Asmentionedabove,wastewater-treatmentprocessesareusually orientedtotheproductionofmicroalgaebiomassorlipidaccumulationforbiofuelproduction. Microalgaespecies,mainlythoseofthegenusChlorellaandScenedesmus,havebeenshowntobe veryefficientatremovingNandP[97–101]. Nutrient-removalcapacitiesofmicroalgaehavealsobeen studiedinSpirulinasp.,Nannochlorosissp.,BotryococcusbrauiniiandPhormodiumbohneri[86,102–104]. Most studies dealing with microalgal wastewater treatment are performed using municipal wastewater. Laboratory-scalebatchculturesofChlorellavulgarisgrowninprimarytreatedmunicipal wastewaterremoved,after10days,over90%NH +and80%PO 3− [97]. 4 4 Scenedesmussp. culturedinnon-treatedmunicipalwastewaterwasreportedtoremove85%of NH + and between 72–76% of PO 3− in 24 h, while phosphate-starved cells were able to remove 4 4 100%NH + and87%PO 3−,inthesameperiod. Thus,PO 3− starvationaspre-treatmentseemsto 4 4 4 enhancetherateofnutrientremoval[105]. Scenedesmus obliquus cultured in cylindrical bioreactors with secondary treated municipal wastewater provided between 47–98% P removal, and 79–100% NH + removal after 8 days with 4 anestimatedbiomassproductivityof26mg−1L−1day−1[98]. AnativespeciesofScenedesmuscultured in analogous conditions removed about 99.9% PO 3− and NH + daily, with an estimated biomass 4 4 productivityof250mg−1L−1day−1,and6%totallipidsperdryweightafter10days[100]. C.vulgarisandS.obliquuscultivatedinsecondarytreatedsewageasfreeorimmobilizedcellsin bioreactorswerereportedtoremove60%and80%NH +asfreecells,and97%and100%forimmobilized 4 cells;atthesametime,PO 3−removalwas53%and80%forfreecells,and55%and83%forimmobilized 4 cells,respectively,afteronly48hoftreatment[99]. ThelipidcontentofimmobilizedcellsofC.vulgaris andS.obliquuswas17%and11%,respectively[99]. Anovelapproachtotreatingmunicipalwastewaterwasreported[82];Scenedesmusdimorphus wascultivatedinfloatingoffshorephotobioreactors;theculturesbecamemixedcontainingChlorella, Energies2018,11,664 9of30 Cryptomonas and Scenedesmus after one year of operation. The authors reported the average lipid contentofthealgalbiomasstobe13%,withamaximumbiomassproductivityof22.7gm−2day−1 duringa14-dayperiod[82]. Coelastrum cf. pseudomicroporum was cultivated in open ponds filled with municipal wastewater [106]. The obtained biomass was used for carotenoid production and also as a bioflocculating agent to separate non-flocculating green algae (Scenedesmus ellipsoideus) and cyanobacteria (Spirulina platensis). C. cf. pseudomicroporum produced up to 91.2 pg cell−1 of total carotenoids.TheauthorsconfirmedthebioflocculatingabilityofC.cf.pseudomicroporumandsuggested thealgabeusedasabioflocculationtool. Agriculturalwastewaterisusuallydilutedbeforebeingusedformicroalgalcultivationtoreduce thehighconcentrationsofnutrientsandtodecreaseturbidity,whichrestrictslightfrompenetrating theculture[103,107–110].Botryococcusbrauiniigrownonsecondarytreatedpiggerywastewaterhadan NO − removalefficiencyof98%andanestimatedbiomassproductivityof700mg−1L−1day−1,after 3 12daysofculture[103].Botryococcusbrauniiculturedinamixtureofcattlefeedlot,ahogfarm,anda dairybarn,onaverageremoved88%oftotalNand98%oftotalPin14days. After30daysofgrowth, itreachedanestimatedbiomassof84.8mg−1L−1day−1withtotallipidsperdryweightof19.8%[108]. Chlorella pyrenoidosa cultured in the influent and effluent of dairy wastewater reduced the concentrations of NO − and PO 3− by 60% and 87% in the influent, 49% and 83% in the effluent, 3 4 respectively,after10daysofmicroalgalgrowth. Theestimatedbiomassproductivityandtotallipids perdryweightwere6.8gL−1and3.5gL−1respectivelyintheinfluentafter15daysofgrowth[109]. The treatment of anaerobic sludge from a starch wastewater plant with Chlorella sp. resulted in 1.67 g L−1 and 1.43 g L−1 of biomass concentration in heat-treated and untreated anaerobic sludge, respectively,afterthreedaysofcultivation[111].Reportedremovalefficiencieswere98.3%and83.0%for Nand64.2%and89.5%forP,inheat-treatedanduntreatedanaerobicsludge,respectively,aftertwodays ofcultivation.Co-cultivationofChlorellasp.withthebacteriaAcinetobactersp.,whichnaturallyoccursin wastewater,couldimprovethenutrient-removalefficienciesfromcentratewastewater[112].Theobserved synergismbetweenthealgaeandAcinetobactersp.wasattributedtotheexchangeofCO andoxygen. 2 A microalgal consortium dominated by Coelastrella sp. was used for the long-term treatment (1 year) of anaerobically digested wastewater in 9600 L high-rate algae ponds with added CO , 2 andresultedinamaximalarealproductivityof29.3gm−2d−1duringthesummerperiod[81]. ThemicroalgaScenedesmussp. wassuccessfullycultivatedinstarch-containingtextilewastewater with a heavy burden of organic compounds. A combined process of activated carbon adsorption, anaerobicdigestionandScenedesmussp. cultivationremovedthecolorby92.4%,theCODby90%and evencarbohydratesby98%withhighutilizationefficienciesofthecultureforacetate(95%),propionate (97%)andbutyrate(98%)[113]. Itwasfurtherrecentlydemonstratedthatrawtannerywastewater fromtheleatherindustrycanbeusedasasourceofnutrientsbymicroalgae. Underoptimalconditions Scenedesmussp. wasabletoremove85%ofN,97%ofPand80%ofCODandreachedaconcentration of0.90gL−1ofbiomassafter24daysofcultivation[114]. ThemicroalgaSpongiochlorissp. wasusedtoremovehydrocarbonsfromwastewateroriginating inthepetrochemicalindustry,whichcontainsmainlydieselhydrocarbons[115]. Thealgawasreported to produce a maximal biomass of 1.5 g L−1 day with 99% removal of total hydrocarbons within 120daysusinganairliftphotobioreactor[115]. Even marine algae species can be successfully cultivated in wastewater/seawater mixtures; Nannochloropsis oculata and Tetraselmis suecica, for example, reached biomass concentrations of 1.285gL−1and1.055gL−1,respectively,after14daysofcultivationin75%wastewater[116]. During autotrophic growth, microalgae are able to assimilate CO from the atmosphere, flue 2 gases,aqueousCO andsolublecarbonates,andconvertitintocomplexmolecules[117]. Growthon 2 atmosphericCO isthemostbasicmethod; however, itspotentialyieldislimitedbythelowCO 2 2 concentration in the air (0.03–0.06% CO ) and by the low efficiency of CO at diffusing from the 2 2 atmosphereintothewater-basedculture[36]. Thus,maximalmicroalgalgrowthreliesonenhancing Energies2018,11,664 10of30 CO concentrationsintheculture,eitherinpureform,compressedoruncompressed,oraspartof 2 fluegas. ThesupplementationofcultureswithCO intheformofinorganiccarbon,i.e.,bicarbonate 2 salts, orascompressedCO gas, enhancesphotosynthesisandbiomassproductionbyupto256% 2 and 260%, respectively; typically, even a positive effect on lipid production can be observed [118]. ConsideringmicroalgalCO uptakerangesfrom20%and70%,atleast1.3–2.4kgCO arerequired 2 2 per kg of dry microalgae [119]; due to the high costs of CO supplementation, bubbling with flue 2 gases provides the best alternative and simultaneously decreases the emission of GHGs [64] and mitigatesthecostsofchemicalandphysicaltreatmentsofthefluegases[36]. Inadditiontoserving asasourceofCO ,bubblingwithfluegasesalsoprovidesinternalmixingoftheculture,avoiding 2 concentrationgradientsofnutrientsandallowingallcellstobeexposedequallytothelightsource, sothatself-shadingandphoto-toxicityareminimized. BubblingoffluegasfurthercontrolsthepH ofaculture,animportantfactortoconsiderasapH-valuebeloweightpreventsNH +toevaporate 4 andPO 3− toprecipitate[57]. Furthermore,thisallowstheremovalofaccumulateddissolvedoxygen, 4 which is toxic to microalgae [120]. However, to directly inject flue gases into microalgal cultures, asuitabledesignandoperationofthecarbonationculturesystemunitiscrucial,otherwisealmostall oftheCO wouldbereleasedintotheatmosphere[121]. 2 Knowledgeofthecompositionofthefluegasesisimportantandshouldbemonitoredasthey varydependingonthesourceofgeneration,thecombustionsystemandcombustiontemperature[122]. Althoughinsomefluegasestheconcentrationsofcertaincompounds,e.g.,NO ,SO orheavymetals, x x arenegligible,inotherstheconcentrationsexceedtoxiclimits,causingacidificationofthemedium orenvironmentalstresstothemicroalgae[123]. Theconcentrationsofnitrogenoxideforexample varybetween50mgNm−3and1500mgNm−3,ofsulfurdioxidefrom0–1400mgNm−3andofsulfur trioxidefrom0–32mgNm−3[122,123]. Accordingtorecentreports,theamountsofSO andNO in x x thefluegaseshavetobelowtomoderate(about150ppm)forsuccessfulalgalcultivation[36,124]. A continuous supply of flue gas into microalgae cultures has also been shown to inhibit the growthofthecellsduetothepresenceofSO ,NO ,andahighconcentrationofCO ,whichcauses x x 2 thepHtodecrease. AlgaefarmersshouldbalancethenegativeeffectsofhighCO concentrations 2 (decreaseofpHaffectstheutilizationofCO ,thenmoreenergyisusedfromthealgaetomaintain 2 theintercellularenvironmentpH)withthepositiveones(improvephotosynthesisandmicroalgal growth)[125]. TheisolationofmicroalgaestrainstoleranttoSO andNO orhighCO concentrations, x x 2 additionofCaCO orNaOHtocontroltheculturepH,andapplyinganon–offpulseforfluegasare 3 someofthestrategiestestedtoovercometheseissues[126,127]. OptimalCO concentrationsvarygreatlyamongmicroalgae;mostspecieshavebeenshownto 2 preferconcentrationsbetween5%and20%. However,afewHawaiianlocalstrainsofRodophytes, Chlorophytes and Cyanophyceae efficiently performed photosynthesis when exposed to CO 2 concentrationsupto100%,aslongasthepHwascontrolledinthemedium[128–130]. Theadditionalobstaclesintheutilizationoffluegasesarerelatedtothepowerrequirementdue to its low pressure, as well as the requirement for cooling operations due to its high temperature. Increasesintemperature(>20◦C)cancauseasignificantreductioninCO solubility,whicheventually 2 leadstodeclinedphotosyntheticefficiency[120]. Nevertheless,oneofthemajorbottlenecksforthe utilizationoffluegasinmicroalgalcultivationisitscompositionofheavymetals,whichultimately mightendupinthebiomass[131]. Heavymetalsfromfluegaseshavebeenreportedtoaccumulate inmicroalgalbiomassandtoaffectbothbiomassandlipidproductivity[131–133]. Heavymetalsare potentiallytoxictomicroalgae,andtheiraccumulationinthebiomassmightfurthercausecarcinogenic, teratogenicandmutageniceffectsonhumanhealth[134]. Theadsorptionoruptakeofheavymetals bymicroalgae,therefore,hasthepotentialtolimittheuseofthebiomass[132]. ThepotentialofCO fixationfromfluegasescombinedwithwastewatertreatmentbymicroalgae 2 hasbeeninvestigatedbyafewresearchers,andhasemergedasafeasiblealternative. Biomassand lipid productivity for Scenedesmus sp. cultivated with ambient air containing 10% CO were 2 217.50 and 20.65 mg L−1 d−1 (9% of biomass), while those for Botryococcus braunii were 26.55 and
Description: