Alexandre Tachard Passos “Combinatorial algorithms and linear programming for inference in natural language processing.” “Algoritmos combinat´orios e programa¸c˜ao linear para inferˆencia em processamento de linguagem natural.” CAMPINAS 2013 i ii Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Matemática, Estatística e Computação Científica Ana Regina Machado - CRB 8/5467 Passos, Alexandre Tachard, 1986- P268c PasCombinatorial algorithms and linear programming for inference in natural language processing / Alexandre Tachard Passos. – Campinas, SP : [s.n.], 2013. PasOrientador: Jacques Wainer. PasTese (doutorado) – Universidade Estadual de Campinas, Instituto de Computação. Pas1. Aprendizado de máquina. 2. Processamento da linguagem natural (Computação). 3. Algoritmos. 4. Programação linear. 5. Análise combinatória. I. Wainer, Jacques,1958-. II. Universidade Estadual de Campinas. Instituto de Computação. III. Título. Informações para Biblioteca Digital Título em outro idioma: Algoritmos combinatórios e de programação linear para inferência em processamento de linguagem natural Palavras-chave em inglês: Machine learning Natural language processing (Computer science) Algorithms Linear programming Combinatorial analysis Área de concentração: Ciência da Computação Titulação: Doutor em Ciência da Computação Banca examinadora: Jacques Wainer [Orientador] Andrew Kachites McCallum Sebastian Robert Riedel Siome Klein Goldenstein Eduardo Alves do Valle Júnior Data de defesa: 28-08-2013 Programa de Pós-Graduação: Ciência da Computação iv Powered by TCPDF (www.tcpdf.org) Institute of Computing /Instituto de Computa¸c˜ao University of Campinas /Universidade Estadual de Campinas Combinatorial algorithms and linear programming for inference in natural language processing. Alexandre Tachard Passos August 28, 2013 Examiner Board/Banca Examinadora: • Prof. Dr. Jacques Wainer (Supervisor) • Prof. Dr. Siome Klein Goldenstein Institute of Computing - UNICAMP • Prof. Dr. Eduardo Valle Institute of Computing - UNICAMP • Dr. Andrew K McCallum School of Computer Science - UMass Amherst • Dr. Sebastian Riedel Department of Computer Science - University College London vii Abstract In natural language processing, and in general machine learning, probabilistic graphical models (and more generally structured linear models) are commonly used. Although these models are convenient, allowing the expression of complex relationships between many random variables one wants to predict given a document or sentence, most learning and prediction algorithms for general models are inefficient. Hence there has recently been interest in using linear programming relaxations for the inference tasks necessary when learning or applying these models. This thesis presents two contributions to the theory and practice of linear program- ming relaxations for inference in structured linear models. First we present a new al- gorithm, based on column generation (a technique which is dual to the cutting planes method) to accelerate the Viterbi algorithm, the most popular exact inference technique for linear-chain graphical models. The method is also applicable to tree graphical models and hypergraph models. Then we present a new linear programming relaxation for the problem of joint inference, when one has many submodels and wants to predict using all of them at once. In general joint inference is NP-complete, but algorithms based on dual decomposition have proven to be efficiently applicable for the case when the joint model can be expressed as many separate models plus linear equality constraints. This thesis proposes an extension to dual decomposition which allows also the presence of factors which score parts that belong in different submodels, improving the expressivity of dual decomposition at no extra computational cost. ix
Description: