ebook img

alexander stukowski ATOMIC-SCALE MODELING OF NANOSTRUCTURED METALS AND ... PDF

185 Pages·2010·26.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview alexander stukowski ATOMIC-SCALE MODELING OF NANOSTRUCTURED METALS AND ...

alexander stukowski ATOMIC-SCALE MODELING OF NANOSTRUCTURED METALS AND ALLOYS Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Alexander Stukowski aus Seeheim-Jugenheim Fachgebiet Materialmodellierung Fachbereich Material- und Geowissenschaften Technische Universität Darmstadt Referent: Prof. Dr. Karsten Albe Korreferent: Prof. Dr. Horst Hahn 12 2010 Tag der Einreichung: . Mai 2 2010 Tag der Prüfung: . Juli 2010 Darmstadt, 17 D ATOMIC-SCALE MODELING OF NANOSTRUCTURED METALS AND ALLOYS alexander stukowski Dissertation 2010 Mai On the cover: Nanocrystalline microstructure loaded with dislocations and twin boundaries after tensile deformation. The visualization has been de- rived from an atomistic simulation with the help of a new analysis method described in this thesis. Alexander Stukowski: Atomic-scale modeling of nanostructured metals and alloys, 2010 Dissertation, © Mai CONTENTS Abstract xi i introduction 1 1 introduction 3 11 3 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8 . Plasticity of nanocrystalline materials . . . . . . . . . . . . . . 121 8 . . Non-dislocation based deformation mechanisms . . . . 122 10 . . Dislocations in nanocrystalline metals . . . . . . . . . . 13 13 . Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 13 . . Molecular dynamics . . . . . . . . . . . . . . . . . . . . 132 17 . . Structure preparation . . . . . . . . . . . . . . . . . . . . 133 18 . . Studying mechanical behavior . . . . . . . . . . . . . . ii characterization of nanocrystalline structures 21 2 visualization and analysis software for atomistic sim - ulation data 23 21 23 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 23 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 24 . Processing pipeline concept . . . . . . . . . . . . . . . . . . . . 24 25 . Additional features . . . . . . . . . . . . . . . . . . . . . . . . . 25 27 . Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 29 . Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 microstrain fields in nanocrystalline metals 31 31 31 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 32 . Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 32 . . Molecular dynamics simulation . . . . . . . . . . . . . . 322 33 . . Analysis of atomic level strain . . . . . . . . . . . . . . 323 35 . . Virtual diffractograms . . . . . . . . . . . . . . . . . . . 33 36 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 36 . . Microstrain from virtual diffractograms . . . . . . . . . 332 36 . . Direct analysis of atomic level strain . . . . . . . . . . . 34 41 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 43 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii dislocations in nanotwinned metals 45 4 dislocation detection methods 47 41 47 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v contents 42 48 . On-the-fly dislocation detection algorithm (ODDA) . . . . . . 421 50 . . Description of the algorithm . . . . . . . . . . . . . . . 422 60 . . Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 423 60 . . Implementation and performance . . . . . . . . . . . . 424 61 . . Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 63 . Dislocation extraction algorithm (DXA) . . . . . . . . . . . . . 431 65 . . Dislocation network extraction . . . . . . . . . . . . . . 432 65 . . Analysis of crystalline atoms . . . . . . . . . . . . . . . 433 67 . . The interface mesh . . . . . . . . . . . . . . . . . . . . . 434 68 . . Elastic Burgers circuits . . . . . . . . . . . . . . . . . . . 435 69 . . Transition to a network of one-dimensional lines . . . . 436 70 . . Extraction of other crystal defects . . . . . . . . . . . . 437 70 . . Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 73 . . Additional remarks . . . . . . . . . . . . . . . . . . . . . 44 74 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 nanotwinned fcc metals strengthening vs softening : . mechanisms 77 51 77 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 79 . Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 79 . . Simulation procedure . . . . . . . . . . . . . . . . . . . 522 81 . . Analysis techniques . . . . . . . . . . . . . . . . . . . . 53 81 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 84 . . Planar fault densities . . . . . . . . . . . . . . . . . . . . 532 84 . . Dislocation densities . . . . . . . . . . . . . . . . . . . . 54 86 . Dislocation plasticity in nanocrystalline copper and palladium 55 89 . Dislocation–twin boundary interactions . . . . . . . . . . . . . 56 92 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 97 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv nanocrystalline alloys 99 6 modeling techniques for alloys at the atomic scale 101 61 101 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 101 . Hybrid MD/MC simulation technique . . . . . . . . . . . . . . 621 102 . . The semi-grandcanonical ensemble . . . . . . . . . . . 622 . . Parallelization strategies for semi-grandcanonical MC 102 simulations . . . . . . . . . . . . . . . . . . . . . . . . . 623 104 . . Optimal spatial decomposition . . . . . . . . . . . . . . 624 105 . . Sampling structural and vibrational degrees of freedom 63 105 . Concentration-dependent potentials . . . . . . . . . . . . . . . 631 . . The concentration-dependent embedded atom method 107 (CD-EAM) . . . . . . . . . . . . . . . . . . . . . . . . . . 632 108 . . Derivation of forces for the CD-EAM model . . . . . . vi contents 633 111 . . Molecular dynamics performance . . . . . . . . . . . . 634 . . From the two-site concentration model to the one-site 112 concentration model . . . . . . . . . . . . . . . . . . . . 635 115 . . Derivation of forces for the one-site CD-EAM model . 636 117 . . MD/MC performance of the one-site CD-EAM . . . . 64 119 . Summary and conclusions . . . . . . . . . . . . . . . . . . . . . 7 nanocrystalline palladium gold alloy 121 – 71 121 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 123 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 123 . . Interatomic potential . . . . . . . . . . . . . . . . . . . . 722 125 . . Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 125 . . Preparation of nanocrystalline model structures . . . . 724 126 . . Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 126 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 126 . . Structure characterization . . . . . . . . . . . . . . . . . 732 128 . . Stress-strain behavior – compositional effects . . . . . . 733 131 . . Re-straining and strain softening . . . . . . . . . . . . . 734 133 . . Chemical GB relaxation . . . . . . . . . . . . . . . . . . 74 136 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 137 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Conclusions 143 Outlook 147 Erklärung – Disclaimer 149 Danksagung – Acknowledgments 151 Curriculum vitae 153 Bibliography vii LIST OF FIGURES 1 11 Figure Deformation mechanism maps for nanocrystalline metals 2 19 Figure Workflow of MD simulations . . . . . . . . . . . . . . . 3 vito 24 Figure O ’s processing pipeline . . . . . . . . . . . . . . . . 4 vito 26 Figure Screenshot of the main window of O . . . . . . . . 5 vito 28 Figure Working with O : A case study . . . . . . . . . . . . 6 Figure Microstrain in nanocrystalline samples as a function of 37 grain size . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 38 Figure Distribution of the atomic strain values . . . . . . . . . 8 38 Figure Strain and stress fields in a nanocrystalline sample . . 9 Figure Average distortions as a function of distance from the 40 grain boundaries . . . . . . . . . . . . . . . . . . . . . . 10 Figure Measurements of intrinsic microstrain of a single grain 41 using the virtual XRD method . . . . . . . . . . . . . . 11 49 Figure Illustration of the dislocation detection method . . . . 12 53 Figure Burgers circuit around a twinning partial . . . . . . . . 13 55 Figure Burgers circuits around two Shockley partials . . . . . 14 56 Figure Dislocation in an fcc crystal with small splitting distance 15 Figure Detection of a screw dislocation in a crystal with free 58 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 61 Figure Simulation of a Frank-Read dislocation source . . . . . 17 Figure Large-scale simulation of the failure of a cracked fcc 62 aluminum single crystal under tension . . . . . . . . . 18 63 Figure Close-up view of a dislocation network . . . . . . . . . 19 64 Figure Quantitative analysis of the dislocation density . . . . 20 Figure Schematic illustration of the dislocation extraction algo- 65 rithm (DXA) . . . . . . . . . . . . . . . . . . . . . . . . . 21 66 Figure Construction of the interface mesh around crystal defects 22 67 Figure The halfedge data structure . . . . . . . . . . . . . . . . 23 69 Figure Tracing of dislocations on the interface mesh . . . . . . 24 71 Figure Dislocation analyis of a nanoindentation simulation . . 25 72 Figure Dislocation analysis of a nanocrystalline model structure 26 79 Figure Nanocrystalline model structure used for MD simulations 27 82 Figure Stress-strain curves for twinned and twin-free Cu and Pd 28 83 Figure Cross sections of nanotwinned Cu and Pd . . . . . . . 29 Figure Dislocation density and planar fault densities in nano- 85 twinned metals . . . . . . . . . . . . . . . . . . . . . . . 30 87 Figure Cross sections of deformed nanocrystalline Cu and Pd viii List of Figures 31 88 Figure Dislocation embryos in nanocrystalline Cu . . . . . . . 32 89 Figure Lomer dislocation in nanocrystalline Pd . . . . . . . . . 33 Figure Formation and dissolving of a stacking fault ribbon in 91 nanotwinned copper. . . . . . . . . . . . . . . . . . . . . 34 92 Figure Relative atomic displacement map of nanotwinned Cu 35 93 Figure Twin-mediated cross-slip of a screw dislocation . . . . 36 94 Figure Generalized planar fault energy curves for Cu and Pd 37 Figure Schmidfactorhistogramofdislocationsinnanotwinned 95 metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure Schematic illustration of the preferred glide systems in 96 nanotwinned Cu and Pd . . . . . . . . . . . . . . . . . . 39 103 Figure Parallelization of the semi-grandcanonical MC method 40 104 Figure Optimal spatial decomposition of the SGC-MC method 41 Figure Performancecomparison betweenthe CD-EAMandthe 112 standard EAM model . . . . . . . . . . . . . . . . . . . 42 114 Figure Formation energy of the Fe–Cr random alloy . . . . . . Figure 43 The h(x) polynomial of the Fe–Cr potential . . . . . . . 115 44 Figure Comparison of the timing in a MC simulation of a 50 119 Fe–Cr alloy at % composition . . . . . . . . . . . . . . 45 123 Figure Enthalpy of mixing of the Pd–Au binary alloy. . . . . . 46 124 Figure Generalized planar fault energies of Pd–Au . . . . . . . 47 126 Figure Distribution of elements in grain boundaries of nc Pd–Au 48 128 Figure Grain boundary excess concentration . . . . . . . . . . 49 Figure Stress-strain curves, dislocation and stacking fault den- 129 sity, and GB free volume of Pd–Au . . . . . . . . . . . . 50 131 Figure MaximumyieldstressasafunctionofPd–Aucomposition 51 132 Figure Preloading effects of Pd–Au . . . . . . . . . . . . . . . . 52 134 Figure Strain-rate and cycling effects of Pd–Au . . . . . . . . . 53 135 Figure Structural vs. chemical equilibration of Pd–Au alloys . 54 136 Figure Elastic stress-strain behavior of Pd–Au . . . . . . . . . ix

Description:
Strain and stress fields in a nanocrystalline sample 38. Figure 9 .. based simulations (e.g. finite element methods), most researchers resort to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.