alexander stukowski ATOMIC-SCALE MODELING OF NANOSTRUCTURED METALS AND ALLOYS Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Alexander Stukowski aus Seeheim-Jugenheim Fachgebiet Materialmodellierung Fachbereich Material- und Geowissenschaften Technische Universität Darmstadt Referent: Prof. Dr. Karsten Albe Korreferent: Prof. Dr. Horst Hahn 12 2010 Tag der Einreichung: . Mai 2 2010 Tag der Prüfung: . Juli 2010 Darmstadt, 17 D ATOMIC-SCALE MODELING OF NANOSTRUCTURED METALS AND ALLOYS alexander stukowski Dissertation 2010 Mai On the cover: Nanocrystalline microstructure loaded with dislocations and twin boundaries after tensile deformation. The visualization has been de- rived from an atomistic simulation with the help of a new analysis method described in this thesis. Alexander Stukowski: Atomic-scale modeling of nanostructured metals and alloys, 2010 Dissertation, © Mai CONTENTS Abstract xi i introduction 1 1 introduction 3 11 3 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 8 . Plasticity of nanocrystalline materials . . . . . . . . . . . . . . 121 8 . . Non-dislocation based deformation mechanisms . . . . 122 10 . . Dislocations in nanocrystalline metals . . . . . . . . . . 13 13 . Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 13 . . Molecular dynamics . . . . . . . . . . . . . . . . . . . . 132 17 . . Structure preparation . . . . . . . . . . . . . . . . . . . . 133 18 . . Studying mechanical behavior . . . . . . . . . . . . . . ii characterization of nanocrystalline structures 21 2 visualization and analysis software for atomistic sim - ulation data 23 21 23 . Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 23 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 24 . Processing pipeline concept . . . . . . . . . . . . . . . . . . . . 24 25 . Additional features . . . . . . . . . . . . . . . . . . . . . . . . . 25 27 . Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 29 . Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 microstrain fields in nanocrystalline metals 31 31 31 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 32 . Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 32 . . Molecular dynamics simulation . . . . . . . . . . . . . . 322 33 . . Analysis of atomic level strain . . . . . . . . . . . . . . 323 35 . . Virtual diffractograms . . . . . . . . . . . . . . . . . . . 33 36 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 36 . . Microstrain from virtual diffractograms . . . . . . . . . 332 36 . . Direct analysis of atomic level strain . . . . . . . . . . . 34 41 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 43 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii dislocations in nanotwinned metals 45 4 dislocation detection methods 47 41 47 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v contents 42 48 . On-the-fly dislocation detection algorithm (ODDA) . . . . . . 421 50 . . Description of the algorithm . . . . . . . . . . . . . . . 422 60 . . Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 423 60 . . Implementation and performance . . . . . . . . . . . . 424 61 . . Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 63 . Dislocation extraction algorithm (DXA) . . . . . . . . . . . . . 431 65 . . Dislocation network extraction . . . . . . . . . . . . . . 432 65 . . Analysis of crystalline atoms . . . . . . . . . . . . . . . 433 67 . . The interface mesh . . . . . . . . . . . . . . . . . . . . . 434 68 . . Elastic Burgers circuits . . . . . . . . . . . . . . . . . . . 435 69 . . Transition to a network of one-dimensional lines . . . . 436 70 . . Extraction of other crystal defects . . . . . . . . . . . . 437 70 . . Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 73 . . Additional remarks . . . . . . . . . . . . . . . . . . . . . 44 74 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 nanotwinned fcc metals strengthening vs softening : . mechanisms 77 51 77 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 79 . Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 79 . . Simulation procedure . . . . . . . . . . . . . . . . . . . 522 81 . . Analysis techniques . . . . . . . . . . . . . . . . . . . . 53 81 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 84 . . Planar fault densities . . . . . . . . . . . . . . . . . . . . 532 84 . . Dislocation densities . . . . . . . . . . . . . . . . . . . . 54 86 . Dislocation plasticity in nanocrystalline copper and palladium 55 89 . Dislocation–twin boundary interactions . . . . . . . . . . . . . 56 92 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 97 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv nanocrystalline alloys 99 6 modeling techniques for alloys at the atomic scale 101 61 101 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 101 . Hybrid MD/MC simulation technique . . . . . . . . . . . . . . 621 102 . . The semi-grandcanonical ensemble . . . . . . . . . . . 622 . . Parallelization strategies for semi-grandcanonical MC 102 simulations . . . . . . . . . . . . . . . . . . . . . . . . . 623 104 . . Optimal spatial decomposition . . . . . . . . . . . . . . 624 105 . . Sampling structural and vibrational degrees of freedom 63 105 . Concentration-dependent potentials . . . . . . . . . . . . . . . 631 . . The concentration-dependent embedded atom method 107 (CD-EAM) . . . . . . . . . . . . . . . . . . . . . . . . . . 632 108 . . Derivation of forces for the CD-EAM model . . . . . . vi contents 633 111 . . Molecular dynamics performance . . . . . . . . . . . . 634 . . From the two-site concentration model to the one-site 112 concentration model . . . . . . . . . . . . . . . . . . . . 635 115 . . Derivation of forces for the one-site CD-EAM model . 636 117 . . MD/MC performance of the one-site CD-EAM . . . . 64 119 . Summary and conclusions . . . . . . . . . . . . . . . . . . . . . 7 nanocrystalline palladium gold alloy 121 – 71 121 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 123 . Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 123 . . Interatomic potential . . . . . . . . . . . . . . . . . . . . 722 125 . . Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 125 . . Preparation of nanocrystalline model structures . . . . 724 126 . . Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 126 . Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 126 . . Structure characterization . . . . . . . . . . . . . . . . . 732 128 . . Stress-strain behavior – compositional effects . . . . . . 733 131 . . Re-straining and strain softening . . . . . . . . . . . . . 734 133 . . Chemical GB relaxation . . . . . . . . . . . . . . . . . . 74 136 . Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 137 . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Conclusions 143 Outlook 147 Erklärung – Disclaimer 149 Danksagung – Acknowledgments 151 Curriculum vitae 153 Bibliography vii LIST OF FIGURES 1 11 Figure Deformation mechanism maps for nanocrystalline metals 2 19 Figure Workflow of MD simulations . . . . . . . . . . . . . . . 3 vito 24 Figure O ’s processing pipeline . . . . . . . . . . . . . . . . 4 vito 26 Figure Screenshot of the main window of O . . . . . . . . 5 vito 28 Figure Working with O : A case study . . . . . . . . . . . . 6 Figure Microstrain in nanocrystalline samples as a function of 37 grain size . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 38 Figure Distribution of the atomic strain values . . . . . . . . . 8 38 Figure Strain and stress fields in a nanocrystalline sample . . 9 Figure Average distortions as a function of distance from the 40 grain boundaries . . . . . . . . . . . . . . . . . . . . . . 10 Figure Measurements of intrinsic microstrain of a single grain 41 using the virtual XRD method . . . . . . . . . . . . . . 11 49 Figure Illustration of the dislocation detection method . . . . 12 53 Figure Burgers circuit around a twinning partial . . . . . . . . 13 55 Figure Burgers circuits around two Shockley partials . . . . . 14 56 Figure Dislocation in an fcc crystal with small splitting distance 15 Figure Detection of a screw dislocation in a crystal with free 58 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 61 Figure Simulation of a Frank-Read dislocation source . . . . . 17 Figure Large-scale simulation of the failure of a cracked fcc 62 aluminum single crystal under tension . . . . . . . . . 18 63 Figure Close-up view of a dislocation network . . . . . . . . . 19 64 Figure Quantitative analysis of the dislocation density . . . . 20 Figure Schematic illustration of the dislocation extraction algo- 65 rithm (DXA) . . . . . . . . . . . . . . . . . . . . . . . . . 21 66 Figure Construction of the interface mesh around crystal defects 22 67 Figure The halfedge data structure . . . . . . . . . . . . . . . . 23 69 Figure Tracing of dislocations on the interface mesh . . . . . . 24 71 Figure Dislocation analyis of a nanoindentation simulation . . 25 72 Figure Dislocation analysis of a nanocrystalline model structure 26 79 Figure Nanocrystalline model structure used for MD simulations 27 82 Figure Stress-strain curves for twinned and twin-free Cu and Pd 28 83 Figure Cross sections of nanotwinned Cu and Pd . . . . . . . 29 Figure Dislocation density and planar fault densities in nano- 85 twinned metals . . . . . . . . . . . . . . . . . . . . . . . 30 87 Figure Cross sections of deformed nanocrystalline Cu and Pd viii List of Figures 31 88 Figure Dislocation embryos in nanocrystalline Cu . . . . . . . 32 89 Figure Lomer dislocation in nanocrystalline Pd . . . . . . . . . 33 Figure Formation and dissolving of a stacking fault ribbon in 91 nanotwinned copper. . . . . . . . . . . . . . . . . . . . . 34 92 Figure Relative atomic displacement map of nanotwinned Cu 35 93 Figure Twin-mediated cross-slip of a screw dislocation . . . . 36 94 Figure Generalized planar fault energy curves for Cu and Pd 37 Figure Schmidfactorhistogramofdislocationsinnanotwinned 95 metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure Schematic illustration of the preferred glide systems in 96 nanotwinned Cu and Pd . . . . . . . . . . . . . . . . . . 39 103 Figure Parallelization of the semi-grandcanonical MC method 40 104 Figure Optimal spatial decomposition of the SGC-MC method 41 Figure Performancecomparison betweenthe CD-EAMandthe 112 standard EAM model . . . . . . . . . . . . . . . . . . . 42 114 Figure Formation energy of the Fe–Cr random alloy . . . . . . Figure 43 The h(x) polynomial of the Fe–Cr potential . . . . . . . 115 44 Figure Comparison of the timing in a MC simulation of a 50 119 Fe–Cr alloy at % composition . . . . . . . . . . . . . . 45 123 Figure Enthalpy of mixing of the Pd–Au binary alloy. . . . . . 46 124 Figure Generalized planar fault energies of Pd–Au . . . . . . . 47 126 Figure Distribution of elements in grain boundaries of nc Pd–Au 48 128 Figure Grain boundary excess concentration . . . . . . . . . . 49 Figure Stress-strain curves, dislocation and stacking fault den- 129 sity, and GB free volume of Pd–Au . . . . . . . . . . . . 50 131 Figure MaximumyieldstressasafunctionofPd–Aucomposition 51 132 Figure Preloading effects of Pd–Au . . . . . . . . . . . . . . . . 52 134 Figure Strain-rate and cycling effects of Pd–Au . . . . . . . . . 53 135 Figure Structural vs. chemical equilibration of Pd–Au alloys . 54 136 Figure Elastic stress-strain behavior of Pd–Au . . . . . . . . . ix
Description: