ebook img

Alarm and service monitoring of large scale multi-service mobile networks PDF

115 Pages·2009·1.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Alarm and service monitoring of large scale multi-service mobile networks

ISSN: 1402-1544 ISBN 978-91-86233-XX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E S IS Department of LTU Skellefteå S Division of Computer Science and Electrical Engineering t e f a n W Alarm and Service Monitoring of a ISSN: 1402-1757 ISBN 978-91-86233-34-1 llin Large-Scale Multi-Service Luleå University of Technology 2009 A la r m a Mobile Networks n d S e r v ic e M o n it o r in g o fL a r g e - S c a le M Stefan Wallin u lt i- S e r v ic e M o b ile N e t w o r k s Luleå University of Technology Alarm and Service Monitoring of Large-Scale Multi-Service Mobile Networks Stefan Wallin ICT Dept. of Computer Science and Electrical Engineering Lule˚a University of Technology Lule˚a, Sweden Supervisor: Associate Professor Christer ˚Ahlund and Dr. Evgeny Osipov Tryck: Universitetstryckeriet, Luleå ISSN: 1402-1757 ISBN 978-91-86233-34-1 Luleå (cid:17)(cid:15)(cid:15)(cid:24) www.ltu.se And here he remained in such terror as none but he can know, trembling in every limb, and the cold sweat starting from every pore, when suddenly there rose upon the night-wind the noise of distant shouting, and the roar of voicesmingled inalarmandwonder. Anysound ofmeninthat lonelyplace, even though itconveyedarealcauseofalarm,wassomethingtohim. Heregainedhisstrengthanden- ergyattheprospectofpersonaldanger;andspringingtohisfeet,rushedintotheopenair. - Charles Dickens, Oliver Twist iv Abstract Two of the most important challenges in network service assurance are • an overwhelming flow of low-quality alarms • understanding the structure and quality of the delivered services This thesis proposes solutions for alarm and service monitoring that address monitoring of large scale multi-service mobile networks. Theworkonalarmsisbasedonstatisticalanalysisofdatacollectedfromareal-world alarmflowandanassociatedtroubleticketdatabasecontainingthenetworkadministra- tors’ expert knowledge. Using data from the trouble ticketing system as a reference, we examine the relationship between the original alarm severity and the human perception ofthealarmpriority. Usingthisknowledge,wesuggestaneuralnetwork-basedapproach for alarm prioritization. Tests using live data show that our prototype assigns the same severity as a human expert in 50% of all cases, compared to 17% for a na¨ıve approach. In order to model and monitor the services, this thesis proposes a novel domain- specific language called SALmon, which permits efficient representation of service mod- els, along with a computational engine for evaluation of service models. We show that the proposed system is a good match for real-world scenarios with special requirements around service modeling. v vi Contents Chapter 1 – Thesis Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 – Towards Better Network Management Solutions 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The Chaotic Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Service Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 3 – Summary of Publications 15 3.1 Overview of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Paper A – Rethinking Network Management Solutions 25 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Ways to Improve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Paper B – Telecom Network and Service Management: an Operator Survey 37 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Current Status of Network Management . . . . . . . . . . . . . . . . . . 41 4 OSS Motivation and Drivers . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 The Future of OSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 Standards and Research Efforts . . . . . . . . . . . . . . . . . . . . . . . 45 7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Paper C – Multipurpose Models for QoS Monitoring 51 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Reference Architecture for a QoS Monitoring Solution . . . . . . . . . . . 57 4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 61 vii viii PaperD–StatisticalAnalysisandPrioritizationofTelecomAlarmsusingNeural Networks 65 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2 Defining the Alarm Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3 Data Mining Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Quantitative Analysis of Alarm Flow . . . . . . . . . . . . . . . . . . . . 72 5 Using Neural Networks for Prioritizing Alarms . . . . . . . . . . . . . . . 75 6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . 82 Paper E – SALmon - A Service Modeling Language and Monitoring Engine 85 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2 The Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4 Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 97

Description:
utility market are entering the service provider arena. In Paper A, we look at but admitted that in reality most of the OSS work is reactive, responding to alarms and problems reported to specific SLAs. This has led new products in this area, for example HP OpenView SQM [20], Digital Fuel Service
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.