ebook img

alabama water resource assessment PDF

152 Pages·2015·12.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview alabama water resource assessment

Lauderdale Limestone Madison Jackson ALABAMA WATER RESOURCE ASSESSMENT Colbert Lawrence Franklin Morgan DeKalb Marshall Marion Winston Cullman Cherokee GROUNDWATER AVAILABILITY IN Etowah Blount SOUTHEAST ALABAMA: Lamar Walker Calhoun Fayette St. Clair Jefferson Cleburne SCIENTIFIC DATA FOR WATER RESOURCE Talladega DEVELOPMENT, PROTECTION, POLICY, Pickens Tuscaloosa Shelby Clay Randolph AND MANAGEMENT Bibb Coosa Chambers Greene Chilton Tallapoosa Hale Sumter Perry Autauga Elmore Lee Macon Marengo Dallas Montgomery Russell Lowndes Bullock Choctaw Wilcox Barbour Pike Butler Crenshaw Clarke Monroe Henry Washington Conecuh Coffee Dale Covington Escambia Geneva Houston Mobile Baldwin Macon Russell Bullock Barbour Pike A Report to Governor Robert Bentley and the Joint Permanent Legislative Committee on Henry Water Policy and Management Dale Coffee Houston Geneva GEOLOGICAL SURVEY OF ALABAMA Berry H. (Nick) Tew, Jr. State Geologist GROUNDWATER AVAILABILITY IN SOUTHEAST ALABAMA: SCIENTIFIC DATA FOR WATER RESOURCE DEVELOPMENT, PROTECTION, POLICY, AND MANAGEMENT FOR GOVERNOR ROBERT BENTLEY AND THE PERMANENT JOINT LEGISLATIVE COMMITTEE ON WATER POLICY AND MANAGEMENT OPEN FILE REPORT 1406 By Marlon R. Cook, Neil E. Moss, Steven P. Jennings, Mac McKinney, Alana L. Rogers, Kenneth M. Smith, Amye S. Hinson, and Ralph Norman Funding for this project provided through the State of Alabama General Fund as appropriated in the 2013 and 2014 budgets of Governor Robert Bentley and the Alabama State Legislature Tuscaloosa, Alabama 2014 Contents Executive summary ................................................................................................ i Introduction ............................................................................................................ 1 Acknowledgments .................................................................................................. 2 Purpose and scope ................................................................................................ 2 Aquifer and water well characterization methodology ............................................ 6 Hydrogeology ..................................................................................................... 6 Well depth .......................................................................................................... 9 Depth to water.................................................................................................... 9 Pumping rates .................................................................................................... 10 Specific capacity ................................................................................................ 10 Net potential productive intervals ....................................................................... 11 Potentiometric surfaces and groundwater level impacts ......................................... 13 Hydrographs and aquifer decline curves ............................................................ 15 Aquifer and water well characteristics ..................................................................... 16 Lower Cretaceous undifferentiated .................................................................... 16 Hydrogeology ............................................................................................... 16 Tuscaloosa Group .............................................................................................. 18 Coker Formation ........................................................................................... 18 Hydrogeology .......................................................................................... 18 Gordo Formation .......................................................................................... 19 Hydrogeology .......................................................................................... 19 Well depth ............................................................................................... 20 Depth to water ......................................................................................... 20 Pumping rates ......................................................................................... 21 Specific capacity ..................................................................................... 21 Net potential productive intervals ............................................................ 21 Potentiometric surfaces ........................................................................... 21 Initial static groundwater levels .......................................................... 21 Current static groundwater levels ...................................................... 23 Groundwater level impacts ................................................................ 24 Hydrographs and aquifer decline curves............................................ 25 Eutaw Formation .......................................................................................... 29 Hydrogeology .......................................................................................... 29 Ripley Formation Cusetta Sand Member ...................................................... 31 Hydrogeology .......................................................................................... 31 Ripley Formation upper unnamed member .................................................. 32 Hydrogeology .......................................................................................... 32 Well depth ............................................................................................... 32 Depth to water ......................................................................................... 32 Pumping rates ......................................................................................... 33 Specific capacity ..................................................................................... 33 Net potential productive intervals ............................................................ 33 Potentiometric surfaces ........................................................................... 33 Initial static groundwater levels .......................................................... 33 ii Current static groundwater levels ...................................................... 34 Groundwater level impacts ................................................................ 34 Hydrographs and aquifer decline curves............................................ 35 Providence Sand .......................................................................................... 39 Hydrogeology .......................................................................................... 39 Clayton Formation ........................................................................................ 39 Hydrogeology .......................................................................................... 39 Well depth ............................................................................................... 40 Depth to water ......................................................................................... 40 Pumping rates ......................................................................................... 41 Specific capacity ..................................................................................... 41 Net potential productive intervals ............................................................ 41 Potentiometric surfaces ........................................................................... 42 Initial static groundwater levels .......................................................... 42 Current static groundwater levels ...................................................... 42 Groundwater level impacts ................................................................ 43 Hydrographs and aquifer decline curves............................................ 43 Salt Mountain Limestone .............................................................................. 56 Hydrogeology .......................................................................................... 56 Well depth ............................................................................................... 58 Depth to water ......................................................................................... 59 Pumping rates ......................................................................................... 59 Specific capacity ..................................................................................... 59 Net potential productive interval .............................................................. 59 Nanafalia Formation ..................................................................................... 60 Hydrogeology .......................................................................................... 60 Well depth ............................................................................................... 60 Depth to water ......................................................................................... 60 Pumping rates ......................................................................................... 60 Specific capacity ..................................................................................... 61 Net potential productive intervals ............................................................ 61 Potentiometric surfaces ........................................................................... 61 Initial static groundwater levels .......................................................... 61 Current static groundwater level ........................................................ 62 Groundwater level impacts ................................................................ 62 Hydrographs and aquifer decline curves............................................ 63 Tuscahoma Sand ......................................................................................... 71 Hydrogeology .......................................................................................... 71 Well depth ............................................................................................... 72 Depth to water ......................................................................................... 72 Pumping rates ......................................................................................... 73 Specific capacity ..................................................................................... 73 Net potential productive intervals ............................................................ 74 Potentiometric surfaces ........................................................................... 74 Initial static groundwater levels .......................................................... 74 Current static groundwater levels ...................................................... 75 iii Groundwater level impacts ................................................................ 76 Hydrographs and aquifer decline curves............................................ 77 Tallahatta Formation ..................................................................................... 78 Hydrogeology .......................................................................................... 78 Well depth ............................................................................................... 79 Depth to water ......................................................................................... 79 Pumping rates ......................................................................................... 79 Specific capacity ..................................................................................... 79 Net potential productive intervals ............................................................ 80 Potentiometric surfaces ........................................................................... 80 Initial static groundwater levels .......................................................... 80 Current static groundwater levels ...................................................... 80 Groundwater level impacts ................................................................ 81 Hydrographs and aquifer decline curves............................................ 81 Lisbon Formation .......................................................................................... 82 Hydrogeology .......................................................................................... 82 Well depth ............................................................................................... 83 Depth to water ......................................................................................... 83 Pumping rates ......................................................................................... 84 Specific capacity ..................................................................................... 84 Net potential productive intervals ............................................................ 84 Potentiometric surfaces ........................................................................... 84 Initial static groundwater levels .......................................................... 84 Current static groundwater levels ...................................................... 85 Groundwater level impacts ................................................................ 85 Hydrographs and aquifer decline curves............................................ 85 Crystal River Formation ................................................................................ 88 Hydrogeology .......................................................................................... 88 Well depth ............................................................................................... 89 Depth to water ......................................................................................... 89 Pumping rates ......................................................................................... 89 Specific capacity ..................................................................................... 90 Net potential productive intervals ............................................................ 90 Potentiometric surfaces ........................................................................... 90 Initial static groundwater levels .......................................................... 90 Current static groundwater levels ...................................................... 91 Groundwater level impacts ................................................................ 91 Hydrographs and aquifer decline curves............................................ 91 Aquifer productive characteristics ........................................................................... 94 Groundwater availability ..................................................................................... 94 Groundwater recharge .................................................................................. 96 Unconfined or partially confined aquifer recharge ................................... 98 Confined aquifer recharge ....................................................................... 103 Subsurface groundwater storage ....................................................................... 105 Well capture zones ............................................................................................ 107 Sustainable groundwater yield ........................................................................... 111 iv Conclusions and recommendations ........................................................................ 112 References cited ..................................................................................................... 122 Illustrations Figure 1. Study area in the southeast Alabama project area ............................... 4 Figure 2. Recharge areas for aquifers in the southeast Alabama project area ...................................................................................................... 7 Figure 3. Generalized stratigraphy of southeast Alabama ................................... 8 Figure 4. Geophysical well logs illustrating method for determining net potential productive interval thickness (75% sand intervals in yellow for Nanafalia aquifer) ................................................................. 12 Figure 5. Diagram depicting drawdown and potentiometric surfaces prior to and after pumping in a confined aquifer ........................................... 14 Figure 6. Hydrograph of Bullock County well N-7, a domestic supply well constructed in the Gordo aquifer to a depth of 925 ft and open- ended ................................................................................................... 25 Figure 7. Hydrograph of Barbour County well K-02, a public supply well constructed in the Gordo aquifer to a depth of 1,752 ft, with the top of the screen 1,278 ft bls ................................................................ 26 Figure 8. Hydrograph of Bullock County well F-1, an unused well constructed in the Gordo aquifer open hole to a depth of 882 ft and open-ended ................................................................................... 27 Figure 9. Hydrograph of Dale County well F-23, a public supply well constructed in the Gordo aquifer to a depth of 2,736 ft, with the top of the screen 2,260 ft bls ................................................................ 28 Figure 10. Hydrograph of Pike County well R-01, a public supply well constructed in the Gordo aquifer to a depth of 2,240 ft, with the top of the screen 1,802 ft bls ................................................................ 29 Figure 11. Hydrograph of Dale County well F-16, an unused public supply well constructed in the Ripley aquifer to a depth of 845 ft, with the top of the screen 805 ft bls ............................................................. 35 Figure 12. Hydrograph of Dale County well F-17, a public supply well constructed in the Ripley aquifer to a depth of 813 ft, with the top of the screen 753 ft bls ................................................................... 36 Figure 13. Hydrograph of Barbour County well P-2, a domestic supply well constructed in the Ripley aquifer to a depth of 181 ft and open- ended ................................................................................................... 37 Figure 14. Hydrograph of Henry County well O-01, a public supply well constructed in the Ripley aquifer to a depth of 818 ft, with the top of the screen 630 ft bls ................................................................... 38 Figure 15. Hydrograph of Pike County well L-01, a public supply well constructed in the Ripley aquifer to a depth of 544 ft, with the top of the screen 526 ft bls ................................................................... 38 Figure 16. Hydrograph of Coffee County well K-01, a public supply well constructed in the Clayton aquifer to a depth of 462 ft, with the top of the screen 349 ft bls ................................................................... 44 v Figure 17. Hydrograph of Coffee County well L-04, a public supply well constructed in the Clayton aquifer to a depth of 570 ft, with the top of the screen 440 ft bls ................................................................... 45 Figure 18. Hydrograph of Crenshaw County well I-2, a domestic supply well constructed in the Clayton aquifer to a depth of 170 ft and open-ended .......................................................................................... 46 Figure 19. Hydrograph of Dale County well DLE-1, an observation well constructed in the Clayton aquifer to a depth of 453 ft, with the top of the screen 433 ft bls ................................................................... 47 Figure 20. Hydrograph of Dale County well F-01, a public supply well constructed in the Clayton aquifer to a depth of 908 ft, with the top of the screen 655 ft bls ................................................................... 47 Figure 21. Hydrograph of Dale County well F-04, a public supply well constructed in the Clayton aquifer to a depth of 870 ft, with the top of the screen 712 ft bls ................................................................... 48 Figure 22. Hydrograph of Dale County well P-7, a public supply well constructed in the Clayton aquifer to a depth of 704 ft, with the top of the screen 570 ft bls ................................................................... 49 Figure 23. Hydrograph of Henry County well F-4, a public supply well constructed in the Clayton aquifer to a depth of 690 ft, with the top of the screen 588 ft bls ................................................................... 50 Figure 24. Hydrograph of Henry County well U-03, a public supply well constructed in the Clayton aquifer to a depth of 718 ft, with the top of the screen 615 ft bls ................................................................... 50 Figure 25. Hydrograph of Henry County well X-1, a public supply well constructed in the Clayton aquifer to a depth of 659 ft, with the top of the screen 590 ft bls ................................................................... 51 Figure 26. Hydrograph of Henry County well X-2, a public supply well constructed in the Clayton aquifer to a depth of 697 ft, with the top of the screen 600 ft bls ................................................................... 51 Figure 27. Hydrograph of Houston County well C-02, a public supply well constructed in the Clayton aquifer to a depth of 1,015 ft, with the top of the screen 850 ft bls ............................................................. 52 Figure 28. Hydrograph of Houston County well D-02, a public supply well constructed in the Clayton aquifer to a depth of 875 ft, with the top of the screen 715 ft bls ................................................................... 53 Figure 29. Hydrograph of Houston County well D-03, a public supply well constructed in the Clayton aquifer to a depth of 850 ft, with the top of the screen 739 ft bls ................................................................... 54 Figure 30. Hydrograph of Houston County well D-05, a public supply well constructed in the Clayton aquifer to a depth of 975 ft, with the top of the screen 710 ft bls ................................................................... 54 Figure 31. Hydrograph of Houston County well I-01, a public supply well constructed in the Clayton aquifer to a depth of 990 ft, with the top of the screen 651 ft bls ................................................................... 55 vi Figure 32. Hydrograph of Houston County well D-01, a public supply well constructed in the Clayton and Ripley aquifers to a depth of 1,105 ft, with the top of the screen 740 ft bls ........................................ 56 Figure 33. Hydrograph of Houston County well I-6, a public supply well constructed in the Clayton and Tuscahoma aquifers to a depth of 754 ft, with the top of the screen 563 ft bls ....................................... 57 Figure 34. Hydrograph of Houston County well I-04, a public supply well constructed in the Clayton and Nanafalia aquifers to a depth of 800 ft, with the top of the screen 545 ft bls ........................................... 58 Figure 35. Hydrograph of Geneva County well R-04, a public supply well constructed in the Nanafalia aquifer to a depth of 1,180 ft ................... 64 Figure 36. Hydrograph of Henry County well J-1, a public supply well constructed in the Nanafalia aquifer to a depth of 302 ft and open-ended .......................................................................................... 64 Figure 37. Hydrograph of Dale County well M-11, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 700 ft, with the top of the screen 355 ft bls ............................. 65 Figure 38. Hydrograph of Dale County well M-02, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 707 ft, with the top of the screen 355 ft bls ............................. 66 Figure 39. Hydrograph of Dale County well M-010, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 773 ft, with the top of the screen 620 ft bls ............................. 67 Figure 40. Hydrograph of Houston County well I-05, a public supply well constructed in the Nanafalia and Clayton aquifers to a depth of 715 ft, with the top of the screen 560 ft bls ........................................... 68 Figure 41. Hydrograph of Houston County well I-2, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 786 ft, with the top of the screen 571 ft bls ............................. 69 Figure 42. Hydrograph of Houston County well I-11, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 835 ft, with the top of the screen 635 ft bls ............................. 70 Figure 43. Hydrograph of Houston County well J-3, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 720 ft, with the top of the screen 580 ft bls ............................. 71 Figure 44. Hydrograph of Houston County well J-6, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 804 ft, with the top of the screen 704 ft bls ............................. 72 Figure 45. Hydrograph of Houston County well I-1, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 714 ft, with the top of the screen 539 ft bls ............................. 73 Figure 46. Hydrograph of Houston County well I-12, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 867 ft, with the top of the screen 595 ft bls ............................. 74 vii Figure 47. Hydrograph of Houston County well I-18, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 777 ft, with the top of the screen 560 ft bls ............................. 75 Figure 48. Hydrograph of Houston County well I-19, a public supply well constructed in the Nanafalia and Tuscahoma aquifers to a depth of 761 ft, with the top of the screen 651 ft bls ............................. 76 Figure 49. Hydrograph of Dale County well B-8, a domestic and stock supply well constructed in the Tuscahoma aquifer to a depth of 270 ft, with the top of the screen 250 ft bls ........................................... 77 Figure 50. Hydrograph of Dale County well N-6, a domestic and stock supply well constructed in the Tuscahoma aquifer to a depth of 355 ft and open-ended ......................................................................... 78 Figure 51. Hydrograph of Geneva County well B-2, a domestic supply well constructed in the Tallahatta aquifer to a depth of 365 ft and open-ended .......................................................................................... 81 Figure 52. Hydrograph of Geneva County well C-2, a domestic supply well constructed in the Tallahatta aquifer to a depth of 127 ft ...................... 82 Figure 53. Hydrograph of Covington County well M-5, a domestic supply well constructed in the Lisbon aquifer to a depth of 170 ft and open-ended .......................................................................................... 86 Figure 54. Hydrograph of Geneva County well R-10, an unused industrial supply well constructed in the Lisbon aquifer to a depth of 150 ft and open ended ................................................................................. 87 Figure 55. Hydrograph of Houston County well AA-1, an unused well constructed in the Lisbon aquifer to a depth of 250 ft, with the top of the screen 230 ft bls ................................................................... 87 Figure 56. Hydrograph of Geneva County well S-8, a public supply well constructed in the Lisbon and Tallahatta aquifers to a depth of 480 ft, with the top of the screen 360 ft bls ........................................... 88 Figure 57. Hydrograph of Covington County well Z-4, an observation well constructed in the Crystal River aquifer open hole to a depth of 300 ft .................................................................................................... 92 Figure 58. Hydrograph of Geneva County well AA-2, an observation well constructed in the Crystal River aquifer to a depth of 150 ft ................. 93 Figure 59. Hydrograph of Houston County well HOU-1, a real-time observation well constructed in the Crystal River aquifer to a depth of 118 ft and open-ended ........................................................... 94 Figure 60. Hydrograph of Houston County well O-12, an irrigation and observation well constructed in the Crystal River aquifer to a depth of 115 ft, with the top of the screen 100 ft bls ............................. 95 Figure 61. Hydrograph of Houston County well R-6, an irrigation supply well constructed in the Crystal River aquifer to a depth of 150 ft .......... 96 Figure 62. Diagram and stormflow hydrograph illustrating pathways of movement of rainfall into stream........................................................... 99 Figure 63. Ungauged stream sties in the southeast Alabama pilot project area used for recharge evaluation ........................................................ 101 viii Figure 64. Recharge volumes for unconfined and confined zones of major aquifers in the southeast Alabama project area ................................... 105 Figure 65 Storativity of a confined aquifer ............................................................ 107 Figure 66. Capture zone for city of Dothan well 20 ................................................ 109 Tables Table 1. Estimated discharge and recharge estimates in selected ungauged nodes for unconfined and partially confined aquifer recharge areas in southeast Alabama ..................................................... 102 Table 2. Unconfined or partially confined recharge for aquifers in the southeast Alabama pilot project area....................................................................... 103 Table 3. Confined recharge for selected aquifers in the southeast Alabama pilot project area....................................................................... 104 Table 4. Storativity, related aquifer characteristics, and available groundwater in storage for major confined aquifers in the project area ......................................................................................................... 108 Table 5. Well capture zone and spacing data for southeast Alabama aquifers ................................................................................................... 111 Plates Gordo and Eutaw Formations Plate 1. Well Depths of Selected Wells Constructed in the Gordo Aquifer, Southeast Alabama Plate 2. Depth to Water in Selected Wells Constructed in the Gordo Aquifer, Southeast Alabama Plate 3. Pumping Rates in Selected Wells Constructed in the Gordo Aquifer, Southeast Alabama Plate 4. Specific Capacities in Selected Wells Constructed in the Gordo Aquifer, Southeast Alabama Plate 5. Net Potential Productive Interval Isopach for the Gordo Aquifer, Southeast Alabama Plate 6. Initial Potentiometric Surface for the Eutaw and Gordo Aquifers, Southeast Alabama Plate 7. Current Potentiometric Surface for the Eutaw and Gordo Aquifers, Southeast Alabama Plate 8. Regional and Production Impact for the Eutaw and Gordo Aquifers, Southeast Alabama Ripley Formation and Cusseta Sand Member Plate 9. Well Depths of Selected Wells Constructed in the Ripley/Cusseta Aquifer, Southeast Alabama Plate 10. Depth to Water in Selected Wells Constructed in the Ripley/Cusseta Aquifer, Southeast Alabama Plate 11. Pumping Rates in Selected Wells Constructed in the Ripley/Cusseta Aquifer, Southeast Alabama ix

Description:
constructed in the Gordo aquifer to a depth of 1,752 ft, with the top of the screen 1,278 ft bls . constructed in the Lisbon and Tallahatta aquifers to a depth of. 480 ft, with the top of the constructed in aquifers of interest supplies valuable information to guide plans for construction of futur
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.