ebook img

Aircraft Structures for Engineering Students , Seventh Edition [7th Ed] (Instructor's Edu Resource 1 of 2, Instructor's Solution Manual) (Solutions) PDF

390 Pages·2021·15.405 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aircraft Structures for Engineering Students , Seventh Edition [7th Ed] (Instructor's Edu Resource 1 of 2, Instructor's Solution Manual) (Solutions)

Aircraft Structures for Engineering Students Seventh Edition Solutions Manual T. H. G. Megson Solutions Manual Solutions to Chapter 1 Problems S.1.1 The principal stresses are given directly by Eqs (1.11) and (1.12) in which σ ¼80N/mm2, σ ¼0 x y (or vice versa), and τ ¼45N/mm2.Thus,from Eq. (1.11), xy pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 80 1 σ ¼ + 802+4(cid:2)452 I 2 2 i.e., σ ¼100:2N=mm2 I From Eq.(1.12), pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 80 1 σ ¼ (cid:3) 802+4(cid:2)452 II 2 2 i.e., σ ¼(cid:3)20:2N=mm2 II ThedirectionsoftheprincipalstressesaredefinedbytheangleθinFig.1.8(b)inwhichθisgivenby Eq.(1.10).Hence, 2(cid:2)45 tan2θ¼ ¼1:125 80(cid:3)0 which gives θ¼24°110 and θ¼114°110 ItisclearfromthederivationofEqs(1.11)and(1.12)thatthefirstvalueofθcorrespondstoσ whilethe I second value correspondsto σ . II Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15). Hence from Eq.(1.15), 100:2(cid:3)ð(cid:3)20:2Þ τ ¼ ¼60:2N=mm2 max 2 and will act onplanes at 45°tothe principal planes. S.1.2 The principal stresses are given directly by Eqs (1.11) and (1.12) in which σ ¼50N/mm2, x σ ¼–35N/mm2,andτ ¼40N/mm2.Thus,fromEq.(1.11), y xy 3 4 Solutions Manual qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 50(cid:3)35 1 σ ¼ + ð50+35Þ2+4(cid:2)402 I 2 2 i.e., σ ¼65:9N=mm2 I and fromEq.(1.12), qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 50(cid:3)35 1 σ ¼ (cid:3) ð50+35Þ2+4(cid:2)402 II 2 2 i.e., σ ¼(cid:3)50:9N=mm2 II From Fig. 1.8(b) and Eq. (1.10), 2(cid:2)40 tan2θ¼ ¼0:941 50+35 which gives θ¼21°380ðσÞ and θ¼111°380ðσ Þ I II Theplanesonwhichthereisnodirectstressmaybefoundbyconsideringthetriangularelementofunit thicknessshowninFig.S.1.2wheretheplaneACrepresentstheplaneonwhichthereisnodirectstress. For equilibrium ofthe element ina directionperpendicular toAC, 0¼50ABcosα(cid:3)35BCsinα+40ABsinα+40BCcosα (i) Dividingthrough Eq. (i) byAB, 0¼50cosα(cid:3)35tanαsinα+40sinα+40tanαcosα which, dividing throughby cos α, simplifiesto 0¼50(cid:3)35tan2α+80tanα FIG.S.1.2 Solutions to Chapter 1 Problems 5 from which tanα¼2:797 or (cid:3)0:511 Hence, α¼70°210 or (cid:3)27°50 S.1.3 The construction of Mohr’s circle for each stress combination follows the procedure described in Section1.8 andis shown inFigs S.1.3(a)–(d). FIG.S.1.3(a) FIG.S.1.3(b) FIG.S.1.3(c) 6 Solutions Manual FIG.S.1.3(d) S.1.4 Theprincipalstressesatthepointaredetermined,asindicatedinthequestion,bytransformingeach stateofstressintoaσ ,σ ,τ stresssystem.Clearly,inthefirstcase,σ ¼0,σ ¼10N/mm2,τ ¼0 x y xy x y xy (Fig.S.1.4(a)).Thetworemainingcasesaretransformedbyconsideringtheequilibriumofthetrian- gularelementABCinFigsS.1.4(b),(c),(e),and(f).Thus,usingthemethoddescribedinSection1.6 andtheprincipleofsuperposition(seeSection5.9),thesecondstresssystemofFigsS.1.4(b)and(c) becomestheσ ,σ ,τ systemshowninFig.S.1.4(d)whilethethirdstresssystemofFigsS.1.4(e)and x y xy (f) transformsinto the σ ,σ , τ system of Fig.S.1.4(g). x y xy Finally,thestatesofstressshowninFigsS.1.4(a),(d),and(g)aresuperimposedtogivethestateof stress shown in Fig. S.1.4(h) from which it can be seen that σ ¼σ ¼15N/mm2 and that the x and I II y planes are principal planes. FIG.S.1.4(a) Solutions to Chapter 1 Problems 7 FIG.S.1.4(b) FIG.S.1.4(c) FIG.S.1.4(d) 8 Solutions Manual FIG.S.1.4(e) FIG.S.1.4(f) FIG.S.1.4(g) Solutions to Chapter 1 Problems 9 FIG.S.1.4(h) FIG.S.1.5 S.1.5 ThegeometryofMohr’scircleofstressisshowninFig.S.1.5inwhichthecircleisconstructedusing the method described inSection 1.8. From Fig. S.1.5, σ ¼OP ¼OB(cid:3)BC+CP (i) x 1 1 IqnffiffiffiEffiffiffiqffiffiffi.ffiffiffiffiffi(ffiiffiffi)ffiffiffiffiffiOffiffi B¼qσffiffiIffiffi,ffiffiffiffiffiBffiffiffiCffiffiffiffiffiffiffiis the radius of the circle that is equal to τmax and CP1¼ CQ2(cid:3)Q P2¼ τ2 (cid:3)τ2 . Hence, 1 1 1 max xy qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi σ ¼σ (cid:3)τ + τ2 (cid:3)τ2 x 1 max max xy Similarly, σ ¼OP ¼OB(cid:3)BC(cid:3)CP inwhichCP ¼CP y 2 2 2 1 Thus, qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi σ ¼σ (cid:3)τ (cid:3) τ2 (cid:3)τ2 y I max max xy 10 Solutions Manual S.1.6 Frombendingtheorythedirectstressduetobendingontheuppersurfaceoftheshaftatapointinthe vertical plane ofsymmetry is given by My 25(cid:2)106(cid:2)75 σ ¼ ¼ ¼75N=mm2 x I π(cid:2)1504=64 From the theoryof the torsion of circular sectionshafts, the shear stress at the same point is Tr 50(cid:2)106(cid:2)75 τ ¼ ¼ ¼75N=mm2 xy J π(cid:2)1504=32 Substituting these valuesin Eqs(1.11) and(1.12) in turn andnotingthat σ ¼0, y pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 75 1 σ ¼ + 752+4(cid:2)752 I 2 2 i.e., σ ¼121:4N=mm2 I pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 75 1 σ ¼ (cid:3) 752+4(cid:2)752 II 2 2 i.e., σ ¼(cid:3)46:4N=mm2 II The corresponding directions asdefinedby θ in Fig.1.8(b) are given by Eq. (1.10) i.e., 2(cid:2)75 tan2θ¼ ¼2 75(cid:3)0 Hence, θ¼31°430ðσÞ I and θ¼121°430ðσ Þ II S.1.7 The direct strainsare expressed interms ofthe stressesusingEqs(1.42),i.e., (cid:5) (cid:3) (cid:4)(cid:6) 1 ε ¼ σ (cid:3)v σ +σ (i) x E x y z (cid:5) (cid:6) 1 ε ¼ σ (cid:3)vðσ +σ Þ (ii) y E y x z (cid:5) (cid:3) (cid:4)(cid:6) 1 ε ¼ σ (cid:3)v σ +σ (iii) z E z x y

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.