ebook img

Aha! Solutions PDF

220 Pages·2008·1.999 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aha! Solutions

i i “main” — 2008/10/2 — 18:29 — page 1 — #13 i i 1 Elementary Problems Let’s begin with some relatively easy problems. The challenges become gradually more difficultas yougothroughthebook.The problemsinthischaptercan be solvedwithout advancedmathematics.Knowledgeofbasicarithmetic,algebra,andgeometrywillbehelp- ful,aswellasyourowncreativethinking.Irecommendthatyouattemptalltheproblems, evenifyoualreadyknowtheanswers, because youmay discovernewandinterestingas- pectsofthesolutions.Abonusaftereach solutiondiscussesarelatedmathematicaltopic. Remember,eachproblemhasanaha!solution. 1.1 Arithmetic Fair Division AbbyhasfifteencookiesandBettyhasninecookies.Carly,whohasnocookies,paysAbby andBetty24centstosharetheircookies.Eachgirleatsone-thirdofthecookies. Bettysays thatshe and Abbyshoulddividethe 24 cents evenly, each taking12 cents. AbbysaysthatsinceshesuppliedfifteencookiesandBettyonlynine,sheshouldtake15 centsandBetty9cents. Whatisthefairdivisionofthe24centsbetweenAbbyandBetty? Solution Thekeyistodeterminetheworthofonecookie.Eachgirleatseightcookies.SinceCarly pays24centsforeightcookies,eachcookieisworth3cents.ThusAbby,whostartswith fifteencookiesandsellsseventoCarly,shouldreceive21cents,andBetty,whostartswith ninecookiesandsellsonetoCarly,shouldreceive3cents. 1 i i i i i i “main” — 2008/10/2 — 18:29 — page 2 — #14 i i 2 1 ElementaryProblems Bonus: Cookie Jar Division Abby, Betty, and Carly have 21 cookie jars (all the same size). Seven are full,seven are half-full,andseven areempty.The girlswishtodividethecookiejarsamongthemselves sothateach girlgetsthesame numberofjarsandthesame amountofcookies. Howcan theydothiswithoutopeningthejars? Therearetwodifferentways,asshownbelow. Abby F F F H E E E Abby F F H H H E E Betty F F F H E E E Betty F F H H H E E Carly F H H H H H E Carly F F F H E E E Wehave designatedthefullcookiejarsbyF,thehalf-fullonesbyH,andtheemptyones by E. In bothsolutions, each girlreceives seven jars and 31 jars’ worthof cookies. We 2 havenotcountedasdifferentthesamesolutionwiththegirls’namespermuted. As we willsee later(in“Integer Triangles” onp. 165),each solutioncorresponds toa trianglewithinteger sides and perimeter 7, as shown below. In a given triangle,the side lengthsequal thenumberoffullcookiejars foreach girlinthecorrespondingcookiejar solution. (cid:0)@ h(h(h(h(h(3 h(h(h(h( 1 (cid:0)(cid:0)2 (cid:0)(cid:0) @@@2@ 3 3 A Mere Fraction (a) Findanintegralfractionbetween1=4and1=3suchthatthedenominatorisapositive integerlessthan10. (b) Findanintegralfractionbetween7=10and5=7suchthatthedenominatorisapositive integerlessthan20. Solution (a) Since3<31 <4,wehave,upontakingreciprocals,theinequalities 2 1 2 1 < < : 4 7 3 Wedouble-check,bycross-multiplication: 1 2 < since 1 7<4 2 4 7 (cid:2) (cid:2) and 2 1 < since 2 3<7 1: 7 3 (cid:2) (cid:2) Onecancheckbyexhaustionthat2=7istheonlysolution. i i i i i i “main” — 2008/10/2 — 18:29 — page 3 — #15 i i 1.1 Arithmetic 3 (b) Notice that the fractionfound in (a) can be obtained by addingthe numerators and denominatorsof1=4and1=3: 1 1 2 C : 4 3 D 7 C Wouldthesametrickworkfor7=10and5=7?Let’strytheplausibleanswer 7 5 12 C : 10 7 D 17 C Weverifytheinequalities 7 12 5 < < 10 17 7 bycross-multiplication: 7 12 < since 7 17<10 12 10 17 (cid:2) (cid:2) and 12 5 < since 12 7<17 5: 17 7 (cid:2) (cid:2) Onecancheckbyexhaustionthat12=17istheonlysolution. Bonus: Mediant Fractions Theanswersto(a)and(b)arecalledmediantfractions.1Themediantfractionofa=band c=d is.a c/=.b d/.Thus,themediantfractionof1=4and1=3is2=7,andthemediant C C fractionof7=10and5=7is12=17.Ifa=b <c=d (withb andd positive),then a a c c < C < : b b d d C Iencouragethereadertoprovetheseinequalitiesusingcross-multiplication. Here isanaha!proofofthemediantfractioninequalities.Assumingthata,b,c andd are allpositive,wewillinterpretthefractionsas concentrationsofsaltinwater. Suppose thatwe have twosolutionsofsaltwater, thefirstwitha teaspoonsofsaltinb gallonsof water, and the second with c teaspoons of salt in d gallons of water. The concentration ofsalt inthe firstsolutionisa=b teaspoons/gallon,whilethe concentrationof saltinthe second solutionisc=d teaspoons/gallon.Suppose thatthe firstsolutionisless salty than thesecond,i.e., a=b < c=d.Now, ifwe combinethetwosolutions,weobtainasolution with a c teaspoons of salt in b d gallons of water, so that the salinity of the new C C solutionis.a c/=.b d/teaspoons/gallon.Certainly,thenewsolutionissaltierthanthe C C firstsolutionandlesssaltythanthesecond.Thatistosay, a a c c < C < : b b d d C Ourproofcantrulybecalledasalinesolution! 1MediantfractionsariseinthestudyofFareysequencesandinthe“solution”ofSimpson’sParadox. i i i i i i “main” — 2008/10/2 — 18:29 — page 4 — #16 i i 4 1 ElementaryProblems A Long Sum Whatisthesumofthefirst100integers, 1 2 3 100‹ C C C(cid:1)(cid:1)(cid:1)C Ofcourse,wecouldlaboriouslyaddupthenumbers.Butweseekinsteadanaha!solu- tion,asimplecalculationthatimmediatelygivestheanswerandinsightintotheproblem. Solution Observethatthenumbersmaybepairedasfollows: 1and100, 2and99, 3and98, ..., 50and51. Wehave50pairs,eachpairaddingupto101,sooursumis50 101 5050. (cid:2) D Thissolutionworksingeneralforthesum 1 2 3 n; C C C(cid:1)(cid:1)(cid:1)C wherenisanevennumber.Wepairthenumbersasbefore: 1andn, 2andn 1, (cid:0) 3andn 2, (cid:0) ..., n=2andn=2 1. C Wehaven=2pairs,eachaddingupton 1,sooursumisn=2 .n 1/ n.n 1/=2. C (cid:2) C D C What if n is odd? We can no longer pair all the numbers (as the middle term has no mate).However,throwingina0doesn’tchangethetotal: 0 1 2 3 n: C C C C(cid:1)(cid:1)(cid:1)C Nowwehaveanevennumberofterms,andtheymaybepairedas 0andn, 1andn 1, (cid:0) 2andn 2, (cid:0) ..., .n 1/=2and.n 1/=2 1. (cid:0) (cid:0) C Wehave.n 1/=2pairs,eachaddingupton,sooursumisn.n 1/=2(again). C C A“duplicationmethod”worksforbothnevenandnodd.LetS bethesum,andintro- duceaduplicateofS,writtenbackwards: S 1 2 3 n: D C C C (cid:1)(cid:1)(cid:1) C S n .n 1/ .n 2/ 1: D C (cid:0) C (cid:0) C (cid:1)(cid:1)(cid:1) C i i i i i i “main” — 2008/10/2 — 18:29 — page 5 — #17 i i 1.1 Arithmetic 5 AddthetwoexpressionsforS,summingthefirstterms,thenthesecondterms,andsoon: 2S .n 1/ .n 1/ .n 1/ .n 1/: D C C C C C C(cid:1)(cid:1)(cid:1)C C (Thetermn 1occursntimes.)Thissimplifiesto C 2S n.n 1/; D C or n.n 1/ S C : D 2 Bonus: Sum of an ArithmeticProgression CarlFriedrichGauss (1777–1855),oneofthegreatestmathematicians ofalltime,issaid tohavesolvedourproblemforn 100whenhewasa10-year-oldschoolpupil.However, D accordingtoE.T.Bell[2],theproblemthatGausssolvedwasactuallymoredifficult: The problem was of the followingsort, 81297 81495 81693 ::: 100899, C C C C where the step from one number tothe next is the same all along(here 198),and a givennumberofterms(here100)aretobeadded. TheproblemmentionedbyBellisthesumofanarithmeticprogression.Wecanevaluate thesumusingourformulaforthesumofthefirstnintegers.Thecalculationis 81297 81495 100899 81297 100 198 .1 99/ C C(cid:1)(cid:1)(cid:1)C D (cid:2) C (cid:2) C(cid:1)(cid:1)(cid:1)C 99 100 8129700 198 (cid:2) D C (cid:2) 2 9109800: D Sums of Consecutive Integers Beholdtheidentities 1 2 3 C D 4 5 6 7 8 C C D C 9 10 11 12 13 14 15 C C C D C C 16 17 18 19 20 21 22 23 24 C C C C D C C C 25 26 27 28 29 30 31 32 33 34 35 C C C C C D C C C C 36 37 38 39 40 41 42 43 44 45 46 47 48: C C C C C C D C C C C C Whatisthepatternandwhydoesitwork?2 2RogerB.Nelsengivesa“proofwithoutwords”forthisproblemintheFebruary1990issueofMathematics Magazine. i i i i i i “main” — 2008/10/2 — 18:29 — page 6 — #18 i i 6 1 ElementaryProblems Solution Considerthethirdidentity: 9 10 11 12 13 14 15: C C C D C C Ifweadd4toeachofthefirstthreenumbersontheleft(9,10,and11),thenweobtainthe threenumbersontheright(13,14,and15).Wehaveadded4 3 12ontheleft,whichis (cid:1) D thefourthnumberontheleft. Thenthidentity(forn 1)is (cid:21) n2 .n2 1/ .n2 n/ .n2 n 1/ .n2 n 2/ .n2 n n/: C C C(cid:1)(cid:1)(cid:1)C C D C C C C C C(cid:1)(cid:1)(cid:1)C C C There are n 1terms ontheleftandnterms ontheright.Ifwe addn 1toeach term C C ontheleftexcept thelastterm, thenwe obtainallthe termsonthe right.We have added .n 1/n n2 nontheleft,andthisisthelasttermontheleft. C D C Bonus: Finding aPolynomial It’seasy tofindthesum givenbythenthidentity.Theaverage ofthen 1termsonthe C leftis.n2 .n2 n//=2,sothesumis C C .n 1/.n2 .n2 1//=2 n.n 1/.2n 1/=2: C C C D C C Let’ssupposethatwedidn’tknowthisformula,butonlythesums: 3; 15; 42; 90; 165; 273; :::: How can we find thepolynomialp.n/, whose values for n 1;2;3;:::are these num- D bers?Themethod(fromfinitedifferencecalculus)istomakeasequenceofdifferencesof consecutivevaluesofourstartingsequence: 12; 27; 48; 75; 108; :::: Werepeatthisprocess,creatingasequenceofsequences: 3; 15; 42; 90; 165; 273; ::: 12; 27; 48; 75; 108; ::: 15; 21; 27; 33; ::: 6; 6; 6; :::: Having obtained a constant sequence, we stop. Now, the polynomialp.n/ is defined by multiplyingthefirstcolumnofourarraybysuccessivebinomialcoefficientsandadding: n n n n .n 1/.n 2/.2n 3/ p.n/ 3 12 15 6 C C C : D 0!C 1!C 2!C 3!D 2 Thispolynomialgivesthevaluesofoursequencestartingatp.0/.Sincewewanttostartat p.1/,wesimplyreplacenbyn 1toobtainthepolynomialp.n/ n.n 1/.2n 1/=2. (cid:0) D C C i i i i i i “main” — 2008/10/2 — 18:29 — page 7 — #19 i i 1.1 Arithmetic 7 Pluses and Minuses Evaluate 1002 992 982 972 962 952 22 12: (cid:0) C (cid:0) C (cid:0) C(cid:1)(cid:1)(cid:1)C (cid:0) Solution Using the formula for the difference of two squares, x2 y2 .x y/.x y/, the (cid:0) D C (cid:0) expressioncanbewrittenas .100 99/.100 99/ .98 97/.98 97/ .96 95/.96 95/ .2 1/.2 1/: C (cid:0) C C (cid:0) C C (cid:0) C(cid:1)(cid:1)(cid:1)C C (cid:0) Sinceeveryotherterminparenthesesisequalto1,thisexpressionsimplifiesto 100 99 98 97 96 95 2 1: C C C C C C(cid:1)(cid:1)(cid:1)C C In“ALongSum,”wefoundthissumtobe5050. Bonus: Curious Identities.3 Canyouexplainthepatternfortheidentities 32 42 52 C D 102 112 122 132 142 C C D C 212 222 232 242 252 262 272 C C C D C C 362 372 382 392 402 412 422 432 442‹ C C C C D C C C Let’sprovethelastoneinawaythatindicateswhat’sgoingoningeneral.Transposingall termsontheleftexcept362totherightsideoftheequationyields 362 .412 402/ .422 392/ .432 382/ .442 372/: D (cid:0) C (cid:0) C (cid:0) C (cid:0) Noticethatwepairedthelargestandsmallestterms,thesecond-largestandsecond-smallest, etc.Now,usingourdifferenceofsquaresformula,wehave 362 .41 40/.41 40/ .42 39/.42 39/ D C (cid:0) C C (cid:0) .43 38/.43 38/ .44 37/.44 37/ C C (cid:0) C C (cid:0) 81 1 81 3 81 5 81 7 D (cid:1) C (cid:1) C (cid:1) C (cid:1) 81.1 3 5 7/ D C C C 81 16: D (cid:1) And certainly, 362 92 42 81 16. Our computationtells the storyin general. For D (cid:1) D (cid:1) n 1,weclaimthat (cid:21) Œn.2n 1/(cid:141)2 Œ2n.n 1/(cid:141)2 .2n2 2n 1/2 .2n2 3n/2: C C(cid:1)(cid:1)(cid:1)C C D C C C(cid:1)(cid:1)(cid:1)C C 3MichaelBoardmangivesa“proofwithoutwords”forthisproblemintheFebruary2000issueofMathematics Magazine. i i i i i i “main” — 2008/10/2 — 18:29 — page 8 — #20 i i 8 1 ElementaryProblems Transposingtermsaswedidinourtestcase,weobtain Œn.2n 1/(cid:141)2 Œ.2n2 2n 1/2 .2n.n 1//2(cid:141) C D C C (cid:0) C C(cid:1)(cid:1)(cid:1) Œ.2n2 3n/2 .n.2n 1/ 1/2(cid:141) C C (cid:0) C C .4n2 4n 1/.1 3 5 7 2n 1/: D C C C C C C(cid:1)(cid:1)(cid:1)C (cid:0) Weneedaformulaforthesumofthefirstnoddnumbers, 1 3 5 7 2n 1: C C C C(cid:1)(cid:1)(cid:1)C (cid:0) Since this is thesum of an arithmetic progression,we coulduse the method in“A Long Sum.”However,bythediagrambelow,wecanseethatthesumisequalton2. n n Usingourformulaforthesumofthefirstnoddnumbers,ouridentitybecomes Œn.2n 1/(cid:141)2 .2n 1/2n2; C D C whichisobviouslytrue.Ouridentityisverified! Which is Greater? Whichnumberisgreater, p6 p10 or p5 p12‹ C C We could compute square roots, but we seek instead an aha! solution that gives the answerimmediately. Solution Thewinningideaistocomparethesquaresofthetwonumbers(thuseliminatingsomeof thesquareroots).Thelargernumberhasthelargersquare. Thesquaresofthegivennumbersare 2 p6 p10 6 2p60 10 16 2p60 C D C C D C (cid:16) (cid:17) and 2 p5 p12 5 2p60 12 17 2p60: C D C C D C Thesecondsquarei(cid:16)slarger.Ther(cid:17)efore,p5 p12isgreaterthanp6 p10. C C i i i i i i “main” — 2008/10/2 — 18:29 — page 9 — #21 i i 1.1 Arithmetic 9 Bonus: ADiophantine Equation The numbers inthis problem—let’scall the smaller one x and the larger one y—satisfy theequation x2 1 y2: C D ThisisanexampleofaDiophantineequation,aftertheGreekmathematicianDiophantus (c.200–c.284).Diophantuscalledforrationalnumbersolutionstosuchequations.Inour problem,x andy arenotrationalnumbers(astheirsquaresareirrationalnumbers).Let’s findallrationalsolutionstotheequation. Thegraphoftheequationisahyperbola,asshowninthepicture. x2 1 y2 AH (cid:8)(cid:1) C D y (cid:16) (cid:16)t(cid:16) (cid:16) (cid:16) (cid:16) .x;y/ (cid:16) (cid:16) (cid:16)t (cid:16) (cid:16) (cid:16) .0;1/ x (cid:8)(cid:1) HA Thepoint.0;1/isonthehyperbola,sowehaveonerationalsolution.If.x;y/isanother rationalsolution(wherex 0),thentheslopeofthelinethrough.0;1/and.x;y/isalso ¤ rational.Let’scallthisslopem.Thus y 1 m (cid:0) : D x 0 (cid:0) Solvingfory,weobtainy mx 1.Substitutingthisexpressionfory intotheequation D C ofthehyperbolayields x2 1 .mx 1/2 C D C m2x2 2mx 1: D C C Solvingforxwehave 2m x ; D 1 m2 (cid:0) andhence 1 m2 y C : D 1 m2 (cid:0) i i i i i i “main” — 2008/10/2 — 18:29 — page 10 — #22 i i 10 1 ElementaryProblems Theseequations,wheremisarationalnumbernotequalto 1,areaparameterizationof ˙ all rational solutionsto the equation x2 1 y2, except for the solution.0; 1/. For C D (cid:0) example, if m 4=11, then .x;y/ .88=105;137=105/.The reason that .0; 1/ isn’t D D (cid:0) included is because it would determine a line with undefined slope. The value m 0 D correspondstoatangentlinetothehyperbolaatthepoint.0;1/.Canyouseewhichvalues ofmcorrespondtotheupperandlowerbranchesofthehyperbola? Cut Down to Size Findtwowholenumbersgreaterthan1whoseproductis999;991. Solution Observethat 999;991 1;000;000 9 D (cid:0) 10002 32: D (cid:0) Thealgebraruleforfactoringthedifferenceoftwosquarescomesinhandy: x2 y2 .x y/.x y/: (cid:0) D (cid:0) C Applyingtherulewithx 1000andy 3,weobtain D D 999;991 10002 32 D (cid:0) .1000 3/.1000 3/ D (cid:0) C 997 1003: D (cid:2) Bonus: Finding thePrime Factorization Wehavefoundtwonumbers,997and1003,whoseproductis999;991.Canthesefactors be broken down further (i.e., do they have proper divisors?), or are they prime numbers (seeToolkit)?Wecandivide997and1003byvariousothernumbers,suchas2,3,etc.,to seeifthequotientsareintegers,buthowmanytrialswouldwehavetomake? Whentestingforproperdivisorsofn,weneedonlydividenbyprimenumbers,because ifnhasaproperdivisorthenthatdivisorhasaprimefactor.Aswetestpossibledivisors, 2, 3, 5, etc., the quotients, n=2, n=3, n=5, etc., become smaller. The “break-even point” occursatpn,sincen=pn pn.Henceweonlyneedtosearch forprimedivisorsupto D pn.Iftherearenosuchdivisors,thennisaprimenumber. As31< p997< 32,theonlyprimenumbersweneedtocheckaspossibledivisorsof 997are2,3,5,7,11,13,17,19,23,29,and31.Upondivision,wefindthatnoneofthese primes divides 997evenly, so 997 is a prime number. To factor 1003, we workwiththe samesetofprimes,since31< p1003< 32.Checkingthese,wehitpay-dirtwith17and findthat1003 17 59,theproductoftwoprimes.Toverifythat59isaprime,youneed D (cid:2) onlycheckthat59isn’tdivisibleby2,3,5,or7,since7<p59<8. Therefore,theprimefactorizationof999;991is17 59 997. (cid:2) (cid:2) i i i i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.