ebook img

- Agnes Scott College PDF

22 Pages·2012·0.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview - Agnes Scott College

r gradient, divergence and curl Eddie Wilson [email protected] Department of Engineering Mathematics University of Bristol r –p.1/11 New questions: What is r ? Can it be used in other ways? Last time : : : m R R Differential calculus of functions f : ! , m = 2; 3 Directional derivatives D f given in terms of vector n^ gradient rf: n D f = rf (cid:1) ^ n^ where @f=@x 0 1 rf := @f=@y for m = 3: B C @f=@z @ A r –p.2/11 Last time : : : Rm R Differential calculus of functions f : ! , m = 2; 3 Directional derivatives D f given in terms of vector n^ gradient rf: n D f = rf (cid:1) ^ n^ where @f=@x 0 1 rf := @f=@y for m = 3: B C @f=@z @ A New questions: What is r ? Can it be used in other ways? r –p.2/11 Therefore might say @=@x 0 1 r := @=@y B C @=@z @ A Can r be used in other ways? The vector r (pronounced Del) Vector gradient @f=@x @=@x 0 1 0 1 rf := @f=@y = @=@y f B C B C @f=@z @=@z @ A @ A r –p.3/11 The vector r (pronounced Del) Vector gradient @f=@x @=@x 0 1 0 1 rf := @f=@y = @=@y f B C B C @f=@z @=@z @ A @ A Therefore might say @=@x 0 1 r := @=@y B C @=@z @ A Can r be used in other ways? r –p.3/11 u u Define the divergence r (cid:1) (pronounced div ) @=@x u(x; y; z) 0 1 0 1 u r (cid:1) := @=@y (cid:1) v(x; y; z) B C B C @=@z w(x; y; z) @ A @ A @u @v @w = + + : @x @y @z f Rn Rn NB Similar definitions for : ! for n 6= 3. = Divergence r(cid:1) u R3 R3 Suppose given vector field : ! . u u x u T x T = ( ), = (u; v; w) , = (x; y; z) . r –p.4/11 f Rn Rn NB Similar definitions for : ! for n 6= 3. = Divergence r(cid:1) u R3 R3 Suppose given vector field : ! . u u x u T x T = ( ), = (u; v; w) , = (x; y; z) . u u Define the divergence r (cid:1) (pronounced div ) @=@x u(x; y; z) 0 1 0 1 u r (cid:1) := @=@y (cid:1) v(x; y; z) B C B C @=@z w(x; y; z) @ A @ A @u @v @w = + + : @x @y @z r –p.4/11 = Divergence r(cid:1) u R3 R3 Suppose given vector field : ! . u u x u T x T = ( ), = (u; v; w) , = (x; y; z) . u u Define the divergence r (cid:1) (pronounced div ) @=@x u(x; y; z) 0 1 0 1 u r (cid:1) := @=@y (cid:1) v(x; y; z) B C B C @=@z w(x; y; z) @ A @ A @u @v @w = + + : @x @y @z f Rn Rn NB Similar definitions for : ! for n 6= 3. r –p.4/11 u u Define r (cid:2) (pronounced curl ) @=@x u(x;y;z) r (cid:2) u (cid:2) := @=@y v(x;y;z) @=@z w(x;y;z) (cid:0) @w=@y @v=@z = @u=@z (cid:0) @w=@x : (cid:0) @v=@x @u=@y f Rn Rn NB No similar definition for : ! for n > 3. = Curl r(cid:2) u R3 R3 Suppose given vector field : ! . u u x u T x T = ( ), = (u; v; w) , = (x; y; z) . r –p.5/11 f Rn Rn NB No similar definition for : ! for n > 3. = Curl r(cid:2) u R3 R3 Suppose given vector field : ! . u u x u T x T = ( ), = (u; v; w) , = (x; y; z) . u u Define r (cid:2) (pronounced curl ) (cid:0) (cid:5) (cid:0) (cid:5) @=@x u(x;y;z) r (cid:2) u := @(cid:1)(cid:2) =@y (cid:6)(cid:2)(cid:2) v(cid:1)(cid:2) (x;y;z) (cid:6)(cid:2) (cid:1)(cid:4) (cid:6)(cid:4) (cid:1)(cid:4) (cid:6)(cid:4) (cid:3) (cid:7) (cid:3) (cid:7) @=@z w(x;y;z) (cid:0) (cid:0) (cid:5) @w=@y @v=@z = @(cid:1)(cid:2) u=@z (cid:0) @w=@x (cid:6)(cid:2): (cid:1)(cid:4) (cid:6)(cid:4) (cid:3) (cid:7) (cid:0) @v=@x @u=@y r –p.5/11

Description:
r gradient, divergence and curl Eddie Wilson [email protected] Department of Engineering Mathematics University of Bristol r – p.1/11
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.