ebook img

Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere (Springer Praxis Books / Environmental Sciences) PDF

154 Pages·2007·6.014 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere (Springer Praxis Books / Environmental Sciences)

Aerosol Optics LightAbsorptionandScatteringbyParticlesintheAtmosphere Dr Alexander A. Kokhanovsky Aerosol Optics Light Absorption and Scattering by Particles in the Atmosphere Published inassociationwith PPrraaxxiiss PPuubblliisshhiinngg Chichester, UK Dr Alexander A. Kokhanovsky Institute of Environmental Physics University of Bremen Bremen Germany SPRINGER–PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES SUBJECTADVISORYEDITOR:JohnMasonB.Sc.,M.Sc.,Ph.D. EDITORIALADVISORYBOARDMEMBER:DrAlexanderA.Kokhanovsky,Ph.D.InstituteofEnvironmental Physics,UniversityofBremen,Bremen,Germany ISBN 978-3-540-23734-1 Springer Berlin Heidelberg New York Springer is part of Springer-Science+Business Media (springer.com) Library of Congress Control Number: 2007935598 Apartfrom any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2008 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such namesareexemptfromtherelevantprotectivelawsandregulationsandthereforefree for general use. Cover design: Jim Wilkie Project copy editor: Mike Shardlow Author-generated LaTex, processed by EDV-Beratung, Germany Printed on acid-free paper Preface Theopticalpropertiesofatmosphericaerosolareof importanceforanumberofapplica- tions, including atmospheric visibility and climate change studies, atmospheric remote sensingandparticulatemattermonitoringfromspace.Theseapplicationsareinvestigated at many research centers worldwide using spaceborne, airborne, shipborne, and ground- basedmeasurements.Bothpassiveandactiveinstruments(e.g.lidars)areused.The pri- maryinterestliesinthedeterminationoftheverticalaerosolopticalthickness,thesingle scattering albedo, the absorption and extinction coefficients, the phase function and the phasematrix.Verticaldistributionsoftheaerosolpropertiesarealsostudiedusingground- based and spaceborne lidars. Considerable progress in understanding aerosol properties hasbeenmadeinrecentyears.However,manyproblemsstillremainunsolved.Theyin- clude,forinstance,directandindirectaerosolforcing,lightinteractionwithnonspherical aerosolparticles(e.g.,desertdust),andalsotheretrievalofaerosolopticalthicknessand optical particle sizing using satellite observations. The area of aerosol research is extensive. Therefore, no attempt has been made to achieve a comprehensive coverage of the results obtained in the area to date. The mainfocusofthisbookisthetheoreticalbasisoftheaerosoloptics.Theresultspresented areverygeneralandcanbeappliedinmanyparticularcases.Thefirstsectionisconcerned with the classification of the different aerosol particles existing in the terrestrial atmo- sphere with respect to their chemical composition and their origin (e.g., dust and sea saltaerosols,smoke,andbiologicalandorganicaerosols).Inthesecondchapter,Iintro- ducethechiefnotionsofaerosoloptics,suchasabsorption,scattering,andextinctioncoef- ficients, andalsophase functions and scattering matrices. Numerous examplesofsingle scattering calculations using Mie theory are presented. Chapter 3 aims to describe tech- niquesforthecalculationofmultiplescatteringeffectsinaerosolmedia.Theresultsareof importanceforstudiesoflightpropagationinthickaerosollayers,wherethesinglescat- teringapproximationcannotbeused.Thediscussioninthissectionisbasedonthesolid groundofradiativetransfertheory.Bothscalarandvectorversionsofthetheoryarepre- sented.Chapter4isfocusedontheFourieropticsofaerosolmedia.Inparticular,the re- duction of contrast due to atmospheric effects and also the optical transfer functions of aerosol media are considered in detail. This section is of importance for understanding imagetransferthroughtheterrestrialatmosphere.Thefinalchapterofthebookisfocused ontheapplicationofopticalmethodsforthedeterminationofaerosolmicrophysicaland opticalproperties.Suchtopicsasmeasurementofbothdirectanddiffusedsolarlightusing Sun photometers and satellite remote sensing of atmospheric aerosol are covered. Also lidar measurements from ground and space are briefly touched upon in this chapter. VI Preface Myhopeisthatthisbookwillbeusefultobothstudentsandengineersworkinginthe areaofaerosolopticsandatmosphericremotesensing.Iamgratefultothemanycollea- gueswhoareinvisibleauthorsofthisbook.Itisnotpossibletomentionalloftheminthis prefacebutmyspecialgratitudegoestoEleonoraZegeforherencouragementduringmy first steps in science and also for shaping my approach to problem solving, to Vladimir Rozanovforhislong-termcollaborationintheareaofradiativetransfer,andtoWolfgang vonHoyningen-HueneandJohnBurrowsfornumerousdiscussionsonthephysicalfoun- dationsofsatelliteremotesensing.IamalsoindebtedtoCliveHorwood,Publisher,forhis encouragement, his patience, and his skill in the design and production of the book. Alexander K. Kokhanovsky Bremen, Germany January 2008 Table of contents 1. Microphysical parameters and chemical composition of atmospheric aerosol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Classification of aerosols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Aerosol models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2. Optical properties of atmospheric aerosol . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Absorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3. Multiple light scattering in aerosol media . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Radiative transfer equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 The diffuse light intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Thin aerosol layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4 Semi-infinite aerosol layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Thick aerosol layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.6 Aerosols over reflective surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7 Multiple scattering of polarized light in aerosol media . . . . . . . . . . . . 65 3.7.1 The vector radiative transfer equation and its numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.7.2 The accuracy of the scalar approximation . . . . . . . . . . . . . . . . . 72 3.7.3 The accuracy of the single scattering approximation. . . . . . . . . . 78 3.7.4 The intensity and degree of polarization of light reflected from an aerosol layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4. Fourier optics of aerosol media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1 Main definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2 Image transfer through aerosol media with large particles . . . . . . . . . . 89 4.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.2 Geometrical optics approximation . . . . . . . . . . . . . . . . . . . . . . 96 VIII Tableofcontents 5. Optical remote sensing of atmospheric aerosol. . . . . . . . . . . . . . . . . . . . . . . 100 5.1 Ground-based remote sensing of aerosols . . . . . . . . . . . . . . . . . . . . 100 5.1.1 Spectral attenuation of solar light . . . . . . . . . . . . . . . . . . . . . . 100 5.1.2 Measurements of scattered light . . . . . . . . . . . . . . . . . . . . . . . 115 5.1.3 Lidar measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2 Satellite remote sensing of atmospheric aerosol . . . . . . . . . . . . . . . . 121 5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2.2 Passive satellite instruments: an overview . . . . . . . . . . . . . . . . 122 5.2.3 Determination of aerosol optical thickness from space . . . . . . . 124 5.2.4 Spatial distribution of aerosol optical thickness . . . . . . . . . . . . 129 5.2.5 Lidar sounding from space . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Chapter 1. Microphysical parameters and chemical composition of atmospheric aerosol 1.1 Classification of aerosols The optical properties of atmospheric aerosol are determined by chemical composition, concentration,size,shape,andinternalstructureofliquidandsolidparticlessuspendedin air.Allthesecharacteristicsvaryinspaceandtime.Atanytimenewparticlescanenteror leavetheatmosphericvolumeunderstudy.Alsoparticlescanbegeneratedinthisvolume bygas-to-particleconversionprocesses.Verydifferentparticlesarefoundinanelementary volume of atmospheric air. Depending on the aerosol type, one can identify among the particlesdifferentminerals,sulfates,nitrates,biologicalparticlessuchasbacteriaandpol- len, organic particles, soot, sea salt, etc. These particles are very tiny objects with sizes typicallyaround100nm.Therefore,usuallytheyarenotvisibletothenakedeye.Never- theless,aerosol particlesconsiderablyreducevisibility, influence climate,andcan cause health problems in humans. There are three main sources of particulate matter in the terrestrial atmosphere. Par- ticlescanentertheatmospherefromthesurface(e.g.,dustandseasalt).Particlescanbe generatedintheatmospherebygas-to-particleconversions.Sometheparticlesenteratmo- spherefromspace(cosmicaerosol).Waterandiceaerosolsformclouds.Theyaretreated in a separate branch of atmospheric science, namely, cloud physics. Clouds will be not consideredhereinasystematicway.Importantly,aerosolparticlesdonotexistinisolation. They interact with cloud droplets, ice crystals, and gases. Also the interaction between aerosolparticles(e.g.,coagulationandcoalescence)isofgreatimportanceforatmospheric science. Surface-derivedaerosolconstitutesthemainmassofsuspendedparticulatematterwith about50%contributiononaglobalscale.Theparticlesbornintheatmospheredominate theaerosolnumberconcentration.Thecosmicaerosolinfluenceisnegligibleinthelower atmosphere. However, it can influence atmospheric air properties in the higher atmo- spheric layers, where the concentration of terrestrial aerosol is low. Humankindhasimportantinfluencesonaplanetaryscale.Inparticular,theconcentra- tion of trace gases increased considerably due to industrial activities and transportation. Thisisalsothecaseforaerosols.Atpresentthecontributionoftheanthropogenicaerosol tothetotalaerosolmassissignificant(seeTable1.1).Thisleadstoserioushealthproblems inhighlypopulatedindustrialareas.Alsotheanthropogenicaerosolisamajorsourceof climatechange.Greenhousegaseswarmtheplanetandtheanthropogenicaerosolactsin theoppositedirectionglobally.Therefore,cleaningoftheairinmajorcitieswithrespectto suspended aerosol particles may lead to additional warming with respect to the current state. 2 1 Microphysicalparametersandchemicalcompositionofatmosphericaerosol Table1.1. Emissions of main aerosol types. Reported ranges correspond to estimations of different authors(Landolt-Bornstein,1988) Aerosoltype Emission(106tonsperyear) Sea-saltaerosol 500–2000 Aerosolformedinatmospherefromagaseousphase 345–2080 Dustaerosol 7–1800 Biologicalaerosol 80 Smokefromforestfires 5–150 Volcanicaerosol 4–90 Anthropogenicaerosol 181–396 For a correct simulation of light propagation in atmosphere, one needs to know the microphysical properties and type of aerosol in the propagation channel. This is rarely known in advance. Therefore, a number of models have been proposed to characterize averagemicrophysicalcharacteristicsofaerosoldependingonthelocationand,therefore, onthe proportion ofvarious typesofparticles (e.g., desertandoceanicaerosolmodels). Itisof importancetohaveaclassificationofmainaerosoltypes.Thenthesetypescan beusedasbuildingblocksforthedevelopmentofmicrophysicalandopticalaerosolmod- els. Atmosphericaerosolsareusuallyclassifiedintermsoftheiroriginandchemicalcom- position. The main aerosol types are given in Table 1.1. Sea-saltaerosol(SSA)originatesfromtheoceanicsurfaceduetowavebreakingphenom- ena. Thelargest droplets fall close totheir areaoforigin. Only the smallest aerosol par- ticles with sizes from approximately 0.1 to 1lm (e.g., those formed by the bursting of bubblesattheoceansurface)areofaprimaryimportancetothelarge-scaleatmospheric aerosolproperties.Theseparticlescanexistintheatmosphereforalongtime.Theyhave been identified over continents as well. The shape of sea-salt aerosol particles depends on the humidity. Cubic particles (see Fig.1.1)arefoundatlowhumidity.Thisisduetothecubicstructureofsodiumchloride, NaCl,themainconstituteofSSA.NaCliseasilydissolvedinwater.Therefore,cubicforms transformintosphericalshapesinhigh-humidityconditions.WeseethatSSAisextremely dynamicwithrespecttothemodificationof itsshape.Itisdifficulttoconstructtheuni- versalopticalmodelofSSAbecauseoftheconsiderableinfluenceofshapesonthe pro- cesses oflight interaction with particles. At least twooptical models ofSSAare needed (i.e., for low- and high-humidity conditions). Yet another problem is associated with the factthatseasaltisnotdistributeduniformlyintheaerosolparticleformedbytheattraction ofwatermoleculesinthefieldofhighhumidity.TheconcentrationofNaClmoleculesis largerclosetothecenterofaparticleascomparedtoitsperiphery.Thisleadstothene- cessitytoaccountfor theinhomogeneityofaparticleintheoreticalstudiesof itsoptical characteristics.Themodelsofradiallyinhomogeneousparticlesmustbeusedinthiscase. Itisknownthattheinternalinhomogeneityofparticlesconsiderablyinfluencestheirabil- itytoscatterandabsorblight.Unfortunately,therearecomputationalproblemsrelatedto thecalculationofopticalcharacteristicsinthecaseofnonsphericalinhomogeneouspar- ticles. This leads to thewidespread use of the homogeneous sphere model of an aerosol

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.