ADVISORY BOARD DAVID BALTIMORE SHOUWEI DING PETER C. DOHERTY JOHN FAZAKERLY HANS J. GROSS BRYAN D. HARRISON ROGER HENDRIX KARLA KIRKEGAARD BERNARD MOSS ERLING NORRBY JULIE OVERBAUGH PETER PALUKAITIS FELIX REY JUERGEN RICHT MARILYN ROOSSINCK JOHN J. SKEHEL GEOFFREY SMITH MARC H.V. VAN REGENMORTEL VERONIKA VON MESSLING AcademicPressisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,USA 525BStreet,Suite1800,SanDiego,CA92101-4495,USA TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 125LondonWall,London,EC2Y5AS,UK Firstedition2016 ©2016ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafetyand thesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors, assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterof productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-804821-4 ISSN:0065-3527 ForinformationonallAcademicPresspublications visitourwebsiteatstore.elsevier.com CONTRIBUTORS DavidC.Bloom DepartmentofMolecularGenetics&Microbiology,UniversityofFloridaCollegeof Medicine,Gainesville,Florida,USA AbrahamL.Brass DepartmentofMicrobiologyandPhysiologicalSystems,UniversityofMassachusetts MedicalSchool,Worcester,Massachusetts,USA TeresaHellberg InstituteofMolecularVirologyandCellBiology,Friedrich-Loeffler-Institut,Federal ResearchInstituteforAnimalHealth,Greifswald-InselRiems,Germany BarbaraG.Klupp InstituteofMolecularVirologyandCellBiology,Friedrich-Loeffler-Institut,Federal ResearchInstituteforAnimalHealth,Greifswald-InselRiems,Germany PaulMeraner DepartmentofMicrobiologyandPhysiologicalSystems,UniversityofMassachusetts MedicalSchool,Worcester,Massachusetts,USA ThomasC.Mettenleiter InstituteofMolecularVirologyandCellBiology,Friedrich-Loeffler-Institut,Federal ResearchInstituteforAnimalHealth,Greifswald-InselRiems,Germany LarsPaßvogel InstituteofMolecularVirologyandCellBiology,Friedrich-Loeffler-Institut,Federal ResearchInstituteforAnimalHealth,Greifswald-InselRiems,Germany Jean-PierrePerreault De´partementdebiochimie,Faculte´ deme´decineetdessciencesdelasante´,Pavillonde rechercheappliquee´ surlecancer,Universite´ deSherbrooke,Que´bec,Canada JillM.Perreira DepartmentofMicrobiologyandPhysiologicalSystems,UniversityofMassachusetts MedicalSchool,Worcester,Massachusetts,USA KatharinaS.Schulz InstituteofMolecularVirologyandCellBiology,Friedrich-Loeffler-Institut,Federal ResearchInstituteforAnimalHealth,Greifswald-InselRiems,Germany GerhardSteger Institutfu¨rPhysikalischeBiologie,Heinrich-Heine-Universita¨tDu¨sseldorf,Du¨sseldorf, Germany vii CHAPTER ONE Functional Genomic Strategies – for Elucidating Human Virus Interactions: Will CRISPR Knockout RNAi and Haploid Cells? Jill M. Perreira, Paul Meraner, Abraham L. Brass1 DepartmentofMicrobiologyandPhysiologicalSystems,UniversityofMassachusettsMedicalSchool, Worcester,Massachusetts,USA 1Correspondingauthor:e-mailaddress:[email protected] Contents 1. Introduction 2 2. Host–VirusGeneticScreens 2 3. RNAiGeneticScreeningTechnologiesandApproaches 3 3.1 RNAiPooledScreening 21 3.2 ArrayedRNAiScreening 23 3.3 RNAiScreeningProblemsandSomeSolutions 28 4. HaploidCellGeneticScreeningTechnologyandApproach 31 5. CRISPR/Cas9GeneticScreeningTechnologiesandApproaches 32 6. ComparisonofHRV-HFScreens:ArrayedMORRRNAiVersusPooledCRISPR/Cas9 34 7. FutureDirections 44 Acknowledgments 45 References 45 Abstract Overthelastseveralyearsawealthoftransformativehuman–virusinteractiondiscover- ieshavebeenproducedusingloss-of-functionfunctionalgenomics.Theseinsightshave greatlyexpandedourunderstandingofhowhumanpathogenicvirusesexploitourcells toreplicate.Twotechnologieshavebeenattheforefrontofthisgeneticrevolution,RNA interference (RNAi) and random retroviral insertional mutagenesis using haploid cell lines(haploidcellscreening),withtheformertechnologylargelypredominating.Now the cutting edge gene editing of the CRISPR/Cas9 system has also been harnessed for large-scale functional genomics and is poised to possibly displace these earlier methods.Herewecompareandcontrastthesethreescreeningapproachesforelucidat- inghost–virusinteractions,outlinetheirkeystrengthsandweaknessesincludingacom- parisonofanarrayedmultipleorthologousRNAireagentscreentoapooledCRISPR/Cas9 humanrhinovirus14–humancellinteractionscreen,andrecountsomenotableinsights madepossiblebyeach.Weconcludewithabriefperspectiveonwhatmightlieahead forthefastevolvingfieldofhuman–virusfunctionalgenomics. AdvancesinVirusResearch,Volume94 #2016ElsevierInc. 1 ISSN0065-3527 Allrightsreserved. http://dx.doi.org/10.1016/bs.aivir.2015.11.001 2 JillM.Perreiraetal. 1. INTRODUCTION Theburdenimposeduponthehealthoftheworld’spopulationbyjust threeofthemajorpathogenicvirusesisstaggering,withnearly300million peoplechronicallyinfectedbyeitherHIV-1(36million)orHBV(250mil- lion),andanother5–6millionsevereinfections byinfluenzaAvirus(IAV) occurring transiently each year (Ortblad, Lozano, & Murray, 2013; Schweitzer, Horn, Mikolajczyk, Krause, & Ott, 2015) (http://www.who. int/immunization/topics/influenza/en/). Collectively these three viruses causethedeathsofover2.5millionpeopleannually.Theseinfectionsarise because viruses must find and exploit the host’s cellular resources and machinery to produce their progeny. Elucidating human pathogenic viral dependencies has been a longstanding pursuit of health science researchers whosegoalistousethisknowledgetotreatandcureinfections.Fordecades, mammalian in vitro tissue culture systems have proved tremendously useful forstudyinghost–virusinteractions.Overthissameperiod,loss-of-function geneticscreeningproducedanimpressivenumberofdiscoveriesandillumi- natedgeneandpathwayfunctioninmultiplemodelsystems.Whileloss-of- function genetic screening proved extremely valuable in model systems, such technologies did not exist for mammalian cells until the discovery and implementation of RNA interference (RNAi) (Fire et al., 1998). The initial technologic revolution of RNAi, and later the development ofhaploidcellscreening,resultedinawaveofdiscoveriesthatshednewlight onmanyvitalhumanviralrequirements(Brassetal.,2008;Haoetal.,2008; Krishnanetal.,2008;Randalletal.,2007;Sessionsetal.,2009).Theascen- dance of CRISPR/Cas9 technologies, which can dramatically alter gene expression, has heralded a new era in mammalian in vitro genetic screening (Shalem, Sanjana, & Zhang, 2015). This review will discuss the available functional genomics strategies, highlight their strengths and weaknesses including a comparison of matched MORR RNAi and CRISRP/Cas9 screens, and provide some future perspectives on the use of mammalian in vitro genetics to elucidate human host–virus interactions. 2. HOST–VIRUS GENETIC SCREENS The numbers of host–virus functional genomic screens using these technologies, particularly RNAi, have been increasing rapidly attesting to FunctionalGenomicStrategiesforElucidatingHuman–VirusInteractions 3 theirinnovativediscoverypower,generalizabilityandremarkableeaseofuse (Table1).DrosophilacellinvitroRNAiscreenswerethefirsttodetectnovel hostfactorinteractionsforseveralhumanpathogenswiththepracticalfocus being on arboviruses, although an elegant approach using a recombinant virusalsomadeitpossibletoscreenforIAVdependencyfactorsinthissys- tem (Arkov, Rosenbaum, Christiansen, Jonsson, & Munchow, 2008; Cherryetal.,2005;Haoetal.,2008).RNAiscreensusinghumancellshave now been done for the majority of major human pathogenic viruses (Table1);theseeffortshavelargelyusedarrayedsiRNAlibrariescombined with high-throughput imaging or plate reader-based assays as readouts for viral replication. Collectively these works have identified multiple previ- ouslyunappreciateddependenciesforeachvirus,aswellashostcelldefense mechanisms.Recentpublicationscoveringvirusesthathavebeenfunction- ally interrogated by multiple independent groups including HIV-1, IAV, and HCV have been discussed elsewhere in detail (Bushman et al., 2009; Hao et al., 2013; Stertz & Shaw, 2011; Zhu et al., 2014). In this work, we focus on the functional genomic screening technologies and provide a resource noting many of the publishedhost–virus screens along with some of their key attributes. 3. RNAi GENETIC SCREENING TECHNOLOGIES AND APPROACHES NearingadecadeagotheNobelPrizewinningdiscoveryofRNAiin C. elegans and its mercurial extension into mammalian systems provided virologistsandgeneticistsalikewithapowerfulnewtoolfordetectingviral dependencies (Elbashir et al., 2001; Fire et al., 1998; Grishok & Mello, 2002). Academia and industry both quickly embraced RNAi and paired it with the contemporaneous completion of the genetic annotation of the entire human genome to create multiple large-scale libraries for functional genomicscreening(Paddisonetal.,2004;Root,Hacohen,Hahn,Lander,& Sabatini, 2006; Silva et al., 2005). Because the RNA-induced silencing complex(RISC)machinery’sexpressionisubiquitous,virtuallyallmamma- liancelllines cancarry outRNAi,permittinghost–virusscreenstobecar- ried out with any tropic cell line and virus pairing (Elbashir et al., 2001). Two major types of RNAi libraries, pooled and arrayed, have been con- structed and dictate the two methods of screening discussed below. Table1 FunctionalGenomicScreensforElucidatingHost–ViralInteractions Viral Viral Viral Competitive Viral Dependency Competitive orRestriction Pooled/ Knockdown/ Challenge Dependency FactorSelection orRestriction factorsSelection Main StageofViral CandidateValidation Citation Virus CellLine Arrayed Library OutTime Time Readout Factors Criteria Factors Criteria Candidates LifecycleImpacted andFollowupAssays Haploid Caretteetal. Influenzavirus Haploid Pooled Haploidcell N/A 2–3weeksSurvival Yes Multiple No N/A CMAS; Entry RT-PCR; cells (2009) (PR/8/34; human Insertional independent SLC35A2 immunofluorescence; H1N1) suspension mutagenesis integrations complementationwith cells withlentiviral cDNAs KBM-7 exontrap Caretteetal. rVSV-GP-Ebola Haploid Pooled Haploidcell N/A UnknownSurvival Yes Multiple No N/A NPC1, Entry,viralfusion Complementationwith (2011) virus human Insertional independent HOPS inlysosomal cDNAs;testagainst adherentcells mutagenesis integrations complex compartment relatedviruses;small- (HAP1) withlentiviral moleculeU1866Aand exontrap imipramine; immunofluorescence/ electronmicroscopy viralentryassays; primarycelllines Jaeetal. rVSV-GP-Lassa HAP1 Pooled Haploidcell Gene-Trap UnknownSurvival Yes Multiple No N/A TMEM5; Entry, NullallelesTALENs; (2013) virus Insertional independent B3GALNT2; presentationof rescuecDNAs;analysis mutagenesis integrations B3GNT1; laminin-binding ofknowpolymorphisms; withlentiviral SLC35A1; carbohydrate flowcytometry; exontrap SGK196 RT-PCR;clinical comparison Kleinfelter rVSV-Andes HAP1 Pooled Haploidcell N/A 8days Survival Yes Multiple No N/A S1P;S2P; Entry S1PCRISPR/Cas9 etal.(2015) virus-GP Insertional independent SREBF2; geneeditinginU2OS; mutagenesis integrations SCAP;LSS; complementationwith withlentiviral SQLE; cDNA;small-molecule exontrap ACAT2 inhibitor siRNA Haploid Petersenetal. rVSV-Andes HAP1 Pooled Haploidcell N/A 3weeks Survival Yes Multiple No N/A SCAP;S1P; Entry Functionallydeficient celland (2014) virus,either Insertional independent S2P;SREBF2 cellsS1P,S2P,orSCAP siRNA recombinantor mutagenesis integrations nullCHOandSREBP2 pseudoparticles withlentiviral KDHEK293T; expressing exontrap TALEN-mediatedgene Renillaluciferase disruption;small- moleculePF-429242 andmevastatin HEK29 ArrayedAmbion 72h 24h Renillaluciferase Yes Inbothpools: SREBF2 Entry 3additionalunique druggable expression Zscorefor siRNAsscreenedwith genomelibrary 210dsRNAs; infection ANDVandVSV-G (9102genes) 112genes <(cid:1)1.5 pseudoparticles; (4siRNAs/ reconfirmed (p<0.009); validatedby1siRNA gene) viability<(cid:1)2 repeatingfindingtwo (2siRNAs/ times.105candidate well) genes—33validated—9 specificforANDV Brassetal. HIV-1-IIIB TZM-bl ArrayedDharmacon 72h 48h %Infectivity Yes Decreased No N/A RAB6A Fusion Subcellularlocalization; (2008) siARRAY (anti-HIV-1p24) Infectivityby geneontology(GO) siRNAlibrary (cid:3)2SDs; TNPO3 Cytosolicpost- biologicalprocesses (21,121 viabilitynot RT–pre analysis;Expression siRNApools) decreasedby integration GenomicInstituteofthe >2SDs NovartisResearchFund MED28 Transcription (GNF);individual shRNAs;individual siRNAs;infectionwith VSV-g;othercelllines Jurkat;qPCR Haoetal. InfluenzaAvirus DL1 ArrayedAmbion 48h 24h Renillaluciferase Yes Inhibition Yes Increase>3 COX6A1 PB2/ RT-PCR;reagent (2008) Flu-VSV- Drosophila activity >2.4SDs; SDs;viability PB1-F2-mediated redundancy;testhuman G-GFP RNAilibrary Viability reduction functions homologues, (13,071genes) reduction Zscore>(cid:1)3 knockdowninHEK293 176candidate Zscore>-3 123candidate ATP6V0D1 Fusion cells;individualsiRNAs; genes—110 genes—11 small-molecule confirmed genes NXF1 RNAexport inhibitors;related confirmed pathway viruses:WSN,H5N1 InfluenzaA/Indonesia/ 7/05,VSV,VACV Continued Table1 FunctionalGenomicScreensforElucidatingHost–ViralInteractions—cont'd Viral Viral Viral Competitive Viral Dependency Competitive orRestriction Pooled/ Knockdown/ Challenge Dependency FactorSelection orRestriction factorsSelection Main StageofViral CandidateValidation Citation Virus CellLine Arrayed Library OutTime Time Readout Factors Criteria Factors Criteria Candidates LifecycleImpacted andFollowupAssays Krishnan WestNilevirus HeLa ArrayedDharmacon 72h 24h %Infectivity Yes Infection No NA CBLL1 Entry IndividualsiRNAs, etal.(2008) WNVstrain siARRAY (viralE-proteins) reductionof small-molecule: 2471 siRNAlibrary >twofold MG132,cyclohexamide; (21,121 colocalization; Denguevirus siRNApools) 30h 283candidates MCT4 Replicationphase enrichmentanalysis DENVNew usingPanther;gene GuineaCstrain expression—microarray; proteininteraction network Taietal. HepatitisCvirus Huh7/Rep- ArrayedDharmacon 72h N/A Viralreplication Yes Replicon Yes Increased PI1KA Replication Geneontology; (2009) Subgenomic Feo siARRAY (luciferase) expression replicon complex clustered;literature genotype1b human decreasesby expression formation, review;othercellline: replicon genome >2SDs withthreshold generationof OR6repliconcellline, siRNAlibrary ofq<0.10 HCV UHCVcon57.3;protein (21,094genes) nonstructural expression;Western protein-associated blot;small-molecule membranes Wortmannin,brefeldin A;reagentredundancy; 236pools— 13pools COPI- Early shRNAs;localization 186 Coatomer studies;virus:HCV- replicated—96 JFH1 confirmed Hepcidin Cellulartranslation Lietal. HepatitisCvirus Huh7.5.1 ArrayedDharmacon 72h 48h %Infectivity Yes Infectivity Yes Infectivity RAB9p40 Neededforboth IndividualsiRNAs, (2009) JFH-1 siARRAY (HCVCore <50%plate >150%pfplate HCVandHIV enrichmentanalysesfor siRNAlibrary; Antibody6G7) 407candidate mean;cell 114candidate mean;cell molecularfunctionand human pools number>50% pools number>50% biologicalprocess genome ofplatemean platemean accordingtoPanther (19,470genes) classification;network analysesinteractome screens+HPRD; RT-PCR Sessionsetal. Denguevirus Dipterancells ArrayedGenome-wide 48h 72h Expressionof Yes Inhibited No N/A FLJ20254; RNA Geneontology;invivo (2009) DENV-S2 RNAilibrary envelopeprotein infection TAZ; accumulation mosquitoAe.aegypti; DRSC2.0 218candidate (cid:3)1.5-foldwith EXDL2; validationofhuman (22,632 dsRNAs— p<0.05 CNOT2 homologuesiRNAsin dsRNAs) rescreen179 Huh-7cells;other dsRNA— viruses:YFV17D identified118 vaccinestrain,Coxsackie dsRNA¼116 B3(strain20;CB3); genes—111 RT-qPCR novel Brassetal. InfluenzaAvirus U2OS ArrayedDharmacon 72h 12h %Infectivity Yes <55% Yes >200% IFITM3 Early Rescreenedcandidates; (2009) A/PuertoRico/ siARRAY (anti-HA infectivity; infectivity; (GO)enrichment 8/34 siRNAlibrary; antibody) 312pools viability>40% 22pools viability>40% analysis;othercelllines human primarylungfibroblasts, genome HeLa,A549,ChEFs, (17,877genes) MDCKs;otherviruses: HIV,PR8,H3N2A/ Udorn/72,A/Brisbane/ 59/07H1N1,A/ Uruguay/716/07 H3N2,A/Aichi/2/68 H3N2,MLV,VSV-G; pseudoparticlesMLV withthefollowing envelopes:H1,H3,H5, H7,MACH, MLVRescueconstruct; overexpression;Western blot; immunofluorescence Shapiraetal. InfluenzaAvirus HBECs ArrayedDharmacon 72h 48h Viralparticle Yes Change Yes Change WNT/p53 NS1related Pathwayanalysis; (2009) IAVPR8 SMARTpool production >twofoldless >twofold pathway clusteringofexpression (reinfection); replication more data;functional IFNproduction comparedto replication annotations;yeast2 median comparedto hybrid median Continued