REVIEWARTICLE published:27January2014 doi:10.3389/fphar.2014.00004 Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy SummerR.Hayek1,SamuelA.Lee2,3 andKarlettJ.Parra1* 1DepartmentofBiochemistryandMolecularBiology,SchoolofMedicine,UniversityofNewMexicoHealthSciencesCenter,Albuquerque,NM,USA 2DepartmentofInternalMedicine,SchoolofMedicine,UniversityofNewMexicoHealthSciencesCenter,Albuquerque,NM,USA 3SectionofInfectiousDiseases,NewMexicoVeteransHealthcareSystem,Albuquerque,NM,USA Editedby: Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit GeorgeTegos,UniversityofNew enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. Mexico,USA V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for Reviewedby: generation of the membrane potential that drives secondary transporters and cellular ParthaKrishnamurthy,Universityof metabolism. V-ATPase is highly conserved across species and is best characterized in KansasMedicalCenter,USA GeorgeDiallinas,Universityof themodelfungus Saccharomycescerevisiae. However, recentstudiesinmammalshave Athens,Greece identifiedsignificantalterationsfromfungi,particularlyintheisoformcompositionofthe14 *Correspondence: subunitsandintheregulationofcomplexdisassembly.Thesedifferencescouldbeexploited KarlettJ.Parra,Departmentof for selectivity between fungi and humans and highlight the potential forV-ATPase as an BiochemistryandMolecularBiology, anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes SchoolofMedicine,Universityof NewMexicoHealthSciencesCenter fatalityin35%ofsystemicinfections, evenwithanti-fungaltreatment.Thepathogenicity MS084670,Albuquerque,87131 ofC.albicanscorrelateswithenvironmental,vacuolar,andcytoplasmicpHregulation,and NewMexico,USA V-ATPaseappearstoplayafundamentalroleineachoftheseprocesses. Geneticlossof e-mail:[email protected] V-ATPaseinpathogenicfungileadstodefectivevirulence,andacomprehensivepictureof themechanismsinvolvedisemerging.Recentstudieshaveexploredthepracticalutilityof V-ATPaseasananti-fungaldrugtargetinC.albicans,includingpharmacologicalinhibition, azole therapy, and targeting of downstream pathways.This overview will discuss these studiesaswellashypotheticalwaystotargetV-ATPaseandnovelhigh-throughputmethods foruseinfuturedrugdiscoveryscreens. Keywords:fungalV-ATPase,vacuolarprotonpump,vacuolaracidification,pHhomeostasis,C.albicansvirulence, anti-fungaltarget V-ATPasePUMPS:STRUCTURE-FUNCTIONAND an intricate mechanism that uses relative rotation of subunits MECHANISMOFCATALYSIS in V and V (Sun-Wada etal., 2003; Forgac, 2007). During 1 o VACUOLARH+-ATPase(V-ATPase)PUMPSARELARGEMULTI-SUBUNIT catalysis, hydrolysis of ATP within the protuberant structure of MOLECULARMOTORSTHATCOUPLEACTIVETRANSPORTOFPROTONS V1 drives rotation of a central stalk (the rotor’s shaft) located WITHATPHYDROLYSISTOACIDIFYINTRACELLULARCOMPARTMENTS nearthecatalyticsites.Therotatingcentralstalkisconnectedto V-ATPase pumps generate and sustain the distinctive organelle a hydrophobic ring of proteolipid-like subunits in Vo (c-ring). pH gradient of the endomembrane system that is necessary for During rotation, each subunit of the c-ring has one essen- Golgi,endosomal,vacuolar,andlysosomalfunctions(Kane,2006; tial glutamate residue that accepts a proton from the cytosol Forgac,2007). Redistributionof protonsfromthecytosoltothe andtransfersittotheorganelle’slumenagainstaconcentration lumen of acidic organelles by V-ATPase pumps is essential for gradient. organelle pH homeostasis. In fungi, V-ATPase also contributes ImportantchangesoccurredasV-ATPaseevolvedfromS.cere- to cytosolic pH regulation (Martinez-Munoz and Kane, 2008). visiae to humans. For example, the c-ring of all fungal species (cid:2) (cid:2)(cid:2) GeneticandpharmacologicinactivationofV-ATPasepumpsalters contains a combination of three subunits (Voc, Voc, Voc ) (cid:2) intracellular and extracellular pH. It disturbs numerous cellu- whereas mammalian c-rings lack the Voc subunit. Phylogenic lar processes including protein processing and sorting, protein analysisbyFinniganetal.(2012)suggeststhatthefungalVocand (cid:2) secretion, receptor-mediated endocytosis, vesicular membrane Voc subunitsevolvedfromageneduplicationinanancestralgene trafficking, zymogen activation, and autophagy (Kane, 2006; thatwascommontoallfungalspecies.Intriguingly,thefunctions (cid:2) Forgac,2007). ofVocandVoc infungi,particularlythebindingcapabilitiesof The vast majority of structural and mechanistic data on eachsubunit,appeartohavedegeneratedfromthecommonances- eukaryotic V-ATPases available have been collected in Saccha- tor (Finnigan etal.,2012). This example of constructive neutral romycescerevisiae.V-ATPaseprotontransportrequiresstructural evolutionsuggeststhatthecomplexityof theV-ATPasemachine and functional coupling of a peripheral domain (V ) with a may have been driven in part by loss-of-function processes 1 membrane-embeddeddomain(V ;Figure1).Couplinginvolves (Doolittle,2012). o www.frontiersin.org January2014|Volume5|Article4|1 “fphar-05-00004” — 2014/1/24 — 16:34 — page 1 — #1 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting In general, the complexity of V-ATPase increased as species we also refer to S. cerevisiae and other fungi throughout this evolvedfurtherfromfungi. Mammalsdevelopedmultipletissue review. and membrane specific isoforms for most V and V subunits 1 o (Figure 1; Marshansky and Futai, 2008; Sun-Wada and Wada, CandidaalbicansISTHEPRIMARYHUMANFUNGAL 2010;Toeietal.,2010).Incontrast,onlyonesubunit(V a)ofV- PATHOGEN o ATPaseinbuddingyeastspeciessuchasS.cerevisiaehasfunctional Candidaalbicansisthemostfrequentlydiagnosedfungalpathogen homologues(Manolsonetal.,1994),andnon-buddingfungisuch andisthefourthleadingcauseofhospital-acquiredbloodstream asNeurosporacrassacontainonlysinglesubunitisoforms(Chavez infectionsinNorthAmerica(Klotzetal.,2007).C.albicansisnor- etal.,2006). mallyaharmlesscommensalintheoralcavity,digestivetract,and The sequence conservation between human and S. cerevisiae genitalregionofhealthypeoplebutisalsoassociatedwithsuper- subunitsis31–41%identityand51–60%similarity,dependingon ficialinfections. C.albicans canenterthebloodstreamfollowing thesubunitandisoform(Rahmanetal.,2013).Thisrelativelylow tissue damage or the formation of fungal biofilms on medical sequenceconservationmayexplaindifferencesinbindingaffinity implants,leadingtosepsis,andorganfailure. Theseseverecases between V-ATPase subunits from human (Rahman etal., 2013) ofsystemiccandidiasisaremostcommoninpatientsundergoing andS.cerevisiae(OotandWilkens,2012);itmayalsofinetuneV- immunosuppressivetherapyorthatareotherwiseimmunocom- ATPaseactivityanddetermineregulatorymechanismsinresponse promised(PfallerandDiekema,2007).Critically,patientmortality to diverse cellular signals and environments. Although infor- ratescanreach35%evenwithanti-fungaltreatment(Hornetal., mation describing the topological arrangements of the human 2009). V V complex is not available, the V-ATPase overall structure InvasiveinfectionduetoC.albicansisamultifactorialprocess 1 o anditssophisticatedmechanismof rotationalcatalysisarelikely thatreliesonnumerousvirulencefactorstocontrolpathogenesis. conservedfromS.cerevisiae. C.albicanscanexistaseitheraunicellularyeastorafilamentous This review focuses on fungal V-ATPases with an emphasis hyphae.Thismorphologicaldimorphismcontributestovirulence, on the human fungal pathogen Candida albicans. We summa- as the yeast form is considered nonpathogenic while the hyphal rize our current understanding of the roles of V-ATPase in forminducesdamageandinvasionofhosttissue(Sudbery,2011). pathogenicity as well as its antifungal drug targeting potential. C.albicansalsosecretesserineaspartylproteinasesandlipasesthat Because V-ATPase subunit structure and composition, assem- are involved in nutrient acquisition, host cell degradation, and bly and regulation, and multiple downstream cellular functions immuneevasion(Nagliketal.,2003).OtherC.albicansvirulence are best studied in the fungus S. cerevisiae (Kane, 2006, 2007), pathways include iron acquisition from hemoglobin, protection FIGURE1|V-ATPasesubunitcompositionandmechanismofcatalysis. theV1Acatalyticsubunitsdrivesrotationofashaft(subunitsD,F)that TheV-ATPaseprotonpumpacidifiesthelumenoforganellesinthe penetratesV1andisboundtoarotatingproteolipidringstructureinVo endomembranesystemofalleukaryoticcells.V-ATPasehas14subunitsthat formedbysubunitsc(3−4)c’c”(c-ring)thattogetherwithsubunitVoaforms formtwodomains,V1andVo.V1(clearandgraysubunits,A3B3CDE3FG3H) thepathforprotontransport.WiththeexceptionofsubunitVoa,whichexists hydrolyzesATPatthecytosolicsideofthemembrane,andVo(bluesubunits, intwoisoforms(Vph1pandStv1p),eachV-ATPasesubunitisencodedbya ac3−4c’c”de)translocatesprotons.Transportofprotonsagainsta singlegeneinfungi.Incontrast,multipleisoforms(twotofour)existformost concentrationgradiententailsarotationalmechanism.Hydrolysisof3ATPin subunitsofthemammalianV-ATPase.SubunitVoc(cid:2)isabsentinmammals. FrontiersinPharmacology|ExperimentalPharmacologyandDrugDiscovery January2014|Volume5|Article4|2 “fphar-05-00004” — 2014/1/24 — 16:34 — page 2 — #2 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting againstreactiveoxygenspecies,expressionofadhesionmolecules, Kane,2008;HuangandChang,2011).Together,thesedatasuggest and formation of biofilms. Together, these pathways facilitate thatV-ATPasemaycontributetonumerousvirulencepathwaysin hostcellinvasionandprotectagainstthehostimmuneresponse C.albicans,includingvacuolarfunctionandduringthegermtube- (Karkowska-Kuletaetal.,2009). to-hyphaemorphologicaltransition.Next,wesummarizestudies thathaveexaminedtheroleofV-ATPaseinfungalpathogenesis CandidaalbicansPATHOGENICITYCORRELATESWITHpH usinggeneticloss-of-functionstudies. REGULATION,SUGGESTINGTHATV-ATPaseMAYPLAYA FUNDAMENTALROLEINFUNGALVIRULENCE CandidaalbicansVIRULENCEISREGULATEDBYpHATTHE GENETICLOSSOFV-ATPaseINPATHOGENICFUNGI EXTRACELLULAR,VACUOLAR,ANDCYTOPLASMICLEVEL AFFECTSVIRULENCE Extracellular pH controls the morphological dimorphism of C. GENETICSTUDIESINVARIOUSPATHOGENICFUNGIHAVE albicans.Thenon-pathogenicyeastformofthefungusgrowspref- ESTABLISHEDALINKBETWEENV-ATPaseACTIVITY,VACUOLAR erentiallyunderacidicenvironmentalconditionswhileincreasing ACIDIFICATION,ANDFUNGALVIRULENCE extracellular pH triggers hyphal growth and increased virulence Hiltyetal.(2008)removedVMA1(theV AsubunitofV-ATPase) 1 (Sudbery,2011).C.albicanshasdevelopedmechanismsthatallow fromtheHistoplasmacapsulatumgenomeanddemonstratedthat ittorapidlyrespondtoenvironmentalpHchanges,andmutants V Aisrequiredforironsequestration,replicationinmacrophages, 1 lacking the ability to sense extracellular pH display reduced andgrowthasamold.Thevma1mutantswerealsoavirulentina virulence(Davis,2009). mousemodelofhistoplasmosis(Hiltyetal.,2008).InCryptococ- Vacuolar pH is important for numerous aspects of C. albi- cusneoformans,lossoftheV asubunitviadeletionofVPH1leads o cansphysiologyandvirulence.Preservationofaprotongradient todefectiveproductionofcapsule,laccase,andurease,threevir- across the vacuolar membrane is critical for general cellular ulencefactorsrequiredforC.neoformansinfectivity. Thesevph1 metabolism, including receptor-mediated endocytosis, intracel- mutants also displayed defective in vivo virulence in a murine lular membrane trafficking, pro-hormone processing, protein modelofmeningo-encephalitis(Ericksonetal.,2001).Thesefind- degradation, uptake of small molecules, and storage and detox- ingslendcredencetotheideathatV-ATPaseplaysacriticalrolein ificationofmetabolitesandions(Vesesetal.,2008).Additionally, themaintenanceoffungalvirulence. both activation and secretion of the proteinase and lipase vir- In contrast, studies inAspergillus fumigatus suggest that host ulence factors and activity of the enzymes themselves require V-ATPase plays an important protective role during immune optimalvacuolarpH(Nagliketal.,2003). NumerousC.albicans defense against fungal pathogens. A. fumigatus is the primary mutantsthatdisplayabnormalvacuolaralkalinizationalsodisplay causative agent of life-threatening invasive bronchopulmonary reduced filamentation and defective in vivo virulence (Bruck- aspergillosis. While host V-ATPase is critical for phagolysoso- mann etal., 2000; Jia etal., 2002; Eck etal., 2005; Poltermann mal acidification and pathogen killing under non-pathogenic etal.,2005;Palanisamyetal.,2010;Zhangetal.,2010;Patenaude conditions, infective variants of A. fumigatus prevent acidi- etal.,2013;Raneetal.,2013).Theazoleclassofanti-fungaldrugs fication of phagolysosomes and allow for A. fumigatus ger- alsofunctionsinpartthroughdisruptionofvacuolaracidification mination and immune escape (Ibrahim-Granet etal., 2003). (Zhangetal.,2010). Notably, work by Slesiona etal. demonstrated that less virulent Finally, cytoplasmic pH contributes to filament formation Aspergillus variants can be made virulent via pharmacological during C. albicans virulence. Germ tube formation, the pre- inhibition of host V-ATPase resulting in loss of phagolysoso- cursor step to hyphal formation, requires alkalinization of the mal acidification (Slesiona etal., 2012). These findings sug- cytoplasm (Stewart etal., 1988). In fungi, cytosolic pH is reg- gest that fungal pathogens may inactivate host V-ATPase path- ulated via the Pma1p plasma membrane proton transporter, ways during immune evasion and suggest that the balance of which pumps protons out of the cell and into the extracellu- pathogenversushostV-ATPaseactivityiscriticalfordetermining larspacetomaintainaneutral-to-alkalinecytosolandanacidic virulence. extracellular environment (Monk etal., 1991). The importance StudiesspecificallyexaminingvirulenceinC.albicanshavefur- of Pma1p activity and cytosolic alkalinization in C. albicans thersolidifiedtheimportanceofV-ATPaseinthisprocess.Inthe virulence is illustrated by studies showing that Pma1p activ- iron-deplete conditions of host tissue, C. albicans must extract ity and expression is upregulated during filamentation (Kaur ironfromhemoglobinforsurvival.Weissmanetal.(2008)demon- (cid:2) and Mishra, 1991; Monk etal., 1993). Furthermore, C. albicans stratedthatnullmutantsofvma11(subunitV c)aredeficientin o mutantsthatcannotproperlyalkalinizetheircytosolinresponse ironacquisition.UponlossofVMA7(subunitV F)inC.albicans, 1 to filamentation cues are avirulent (Stewart etal., 1988, 1989; Poltermann etal. (2005) noted defects in in vitro filamentation Mahantyetal.,1990). andinvivovirulenceduringsystemiccandidiasis.Theauthorsfur- Thecentralimportanceof pHregulationinC.albicans viru- therconnectedthesedefectstobiochemicalphenotypesincluding lencemakesV-ATPaseanattractivetargetforanti-fungaltherapy vacuolaralkalinization,pH-dependentgrowth,andsensitivityto (Parra,2012).InadditiontoitscriticalroleinvacuolarpHhome- metal ions (Poltermann etal., 2005). Recently, our laboratories ostasis (Kane, 2006; Tarsio etal., 2011), V-ATPase is a known demonstratedthatinduciblelossofVMA3(subunitV cofthec- o regulatorofPma1pactivityinS.cerevisiae.V-ATPasemutantsdis- ring)inC.albicansresultsinalkalinevacuoleswithfissiondefects, playabnormallyacidifiedcytosolduetoalackofproperlylocalized leading to reduced protease and lipase secretion, defective fila- or functional Pma1p (Perzov etal., 2000; Martinez-Munoz and mentation,andineffectivemacrophagekilling(Raneetal.,2013). www.frontiersin.org January2014|Volume5|Article4|3 “fphar-05-00004” — 2014/1/24 — 16:34 — page 3 — #3 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting Unpublished studies from our laboratories have yielded similar CURRENTUTILITYOFV-ATPaseASANANTI-FUNGALDRUG phenotypesfollowingtheinduciblelossofVMA2(subunitV B). TARGET 1 InC.albicans,theVoasubunitistheonlysubunitwithinthe The recent emergence of multidrug resistant strains of C. albi- enzyme complex that is encoded by multiple isoforms: VPH1 cans has made the development of novel classes of anti-fungal localizes V-ATPase to vacuoles while STV1 traffics V-ATPase to drugs paramount (Hameed and Fatima, 2013). V-ATPase is an theGolgiandendocyticorganelles(Patenaudeetal.,2013;Raines attractive target for drug discovery, given the numerous lines etal., 2013). This difference was recently exploited to study the of genetic evidence supporting a critical role for V-ATPase in contribution of organelle-specificV-ATPase to C. albicans viru- C. albicans virulence. We next consider the feasibility of V- lence. BothourlaboratoriesandPatenaudeetal.(2013)showed ATPase as an anti-fungal drug target via an overview of three thatlossofVPH1butnotSTV1leadstovacuolaralkalinization, currently available methods that utilizeV-ATPase-related mech- abnormalvacuolarmorphology,anddefectivemetalionseques- anisms: pharmacological inhibition of V-ATPase, azole therapy, tration(Rainesetal.,2013).Ourstudynotedthatalthoughthese andPma1pinhibition. biochemical defects contributed to reduced protease and lipase secretion,thevph1mutantsdisplayedonlymodestfilamentation PHARMACOLOGICALINHIBITIONOFV-ATPase defectsandwild-typelevelsofbiofilmformationandmacrophage V-ATPaseinhibitorshavebeenusedforover20yearstostudythe killing (Raines etal., 2013). Our results suggest that vacuolar functionandmechanismofV-ATPaseactivityinorganismsrang- acidification is dispensable during certain C. albicans virulence ing from fungi to humans. As of 2009, eight types of V-ATPase pathways. Furthermore, Stv1p-containing V-ATPase complexes inhibitors had been described, including the best characterized may play novel roles in pathogenesis (Figure 2). In contrast, plecomacrolide class (Huss and Wieczorek, 2009). The pleco- the vph1 mutant cells used in the Patenaude etal. (2013) study macrolides include bafilomycin and concanamycin, which are displayed defective filamentation, reduced damage to epithelial antibiotics that bind to theV c subunit of V-ATPase to prevent o and macrophage host cells, and avirulence during systemic in c-ringrotationandinterferewithATPhydrolysisandprotontrans- vivo infection. These results suggest that vacuolar acidification port simultaneously (Bowman etal., 1988; Drose etal., 1993). isessentialforallformsofC.albicansvirulence.Theexplanation Notably, both bafilomycin and concanamycin have been shown for these disparate results remains to be determined but likely toinhibitV-ATPasefromC.albicans(CalvertandSanders,1995; centers around differences in strain background or methodol- Chanetal.,2012). However,noneof themoleculesbelongingto ogy.Nonetheless,thesestudiesraisethefascinatingpossibilitythat theaforementionedeightclassesofV-ATPaseinhibitorsarecur- organelle-specificV-ATPaseactivitycanbemodulatedtocontrol rentlyusedtotreatC.albicansinfectioninaclinicalsetting;many specificC.albicansvirulencepathways. cannot differentiate between the fungal target and mammalian FIGURE2|V-ATPaseinnon-vacuolarorganelles(Stv1p-containing unpublishedresults).VMA3deficient:Vacuolaralkalinizationanddefective complexes)playsayetunknownroleinC.albicansvirulence.Wild-type: Pma1pactivityoccuratlevelsequaltothatofVPH1deficientcellswhenall Whenfunctional,V-ATPase-mediatedacidificationofvacuoles,Golgi,and V-ATPasefunctionismissing(Stv1p-andVph1-containingV-ATPase secretoryvesiclesmaintainsorganellepHandsupportstrafficofPma1pto complexes;Raneetal.,2013andunpublishedresults).However,VMA3 thecellsurfaceforprotoneffluxandmaintenanceofanalkalinecytosol.VPH1 deficientC.albicansexhibitsgrowthdefectsatneutralpHandseverely deficient:C.albicansgrowsnormallyatneutralpHwhenonly reducedfilamentationundertheseconditions.Wethereforehypothesizethat Vph1p-containingV-ATPasecomplexes(vacuolarmembrane)aremissing. thepresenceofStv1p-containingV-ATPaseinnon-vacuolarorganelles Onlymodestfilamentationdefectsareobvious,despitetheconcomitant maintainsvirulenceinthefaceofdefectivevacuolarandcytoplasmicpH vacuolaralkalinizationanddefectivePma1pactivity(Rainesetal.,2013and homeostasis.Pink=acidic/acidified,blue=alkaline/alkalinized. FrontiersinPharmacology|ExperimentalPharmacologyandDrugDiscovery January2014|Volume5|Article4|4 “fphar-05-00004” — 2014/1/24 — 16:34 — page 4 — #4 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting hostV-ATPase(BowmanandBowman,2005;HussandWieczorek, These studies by Zhang etal. (2010) have identified a new 2009). regulatorypathwayinvolvedinV-ATPasefunctionaswellaseluci- Recently,ourlaboratorydevelopedahigh-throughputscreen- datedanovelmechanismunderlyingazoletoxicityinC.albicans. ing method to identify newV-ATPase inhibitors in S. cerevisiae From a therapeutic standpoint, these studies provide proof-of- (Chan etal.,2012). In this method, S. cerevisiae cells are trans- principle that anti-V-ATPase agents could work in the clinical formedwiththegeneforpHluorin,apH-sensitiveversionofGFP setting.Importantly,drugstargetingV-ATPasemayactmechanis- (Brettetal.,2005).ThefluorescenceintensityofpHluorincanbe ticallysimilartoazoleswhilebypassingthemultidrugresistance usedtoidentifymoleculesthatacidifythecytosolofS.cerevisiae thathasplaguedcurrentanti-fungaltherapies. followingV-ATPaseinhibition.WescreenedthePrestwickChem- ical Library (a collection of 1120 off-patent drug compounds) Pma1pINHIBITION using this method and identified alexidine dihydrochloride and GiventheinterplaybetweenV-ATPaseandPma1pinS.cerevisiae thonzonium bromide as novel and specific V-ATPase inhibitors (Perzov etal., 2000; Martinez-Munoz and Kane, 2008; Huang (Chan etal., 2012). Cells treated with these drugs showed a V- and Chang, 2011) and C. albicans (unpublished results), anti- ATPase-specificpH-sensitivegrowthphenotype(vmaphenotype) fungaltherapiesthatrelyonPma1pinhibitionmayaffectpathways exclusive of fungi species. These inhibitors belong to a unique downstreamofV-ATPasefunction.Indeed,Bowmanetal.(1997) classofV-ATPaseuncouplersthatinhibitprotontransportwith- demonstratedthat64of66mutationsthatrescuedconcanamycin outaffectingATPhydrolysis.Wealsoconfirmedthatdisulfiram, A-mediatedV-ATPaseinhibitioninN.crassawerelocalizedtothe acompoundidentifiedpreviouslybyahigh-throughputscreen- PMA1gene.Thesyntheticorganoseleniumcompoundebselenisa ingmethodthatidentifiesdrugsthatalkalinizevacuoles(Johnson knowninhibitorofPma1p(Chanetal.,2007;Billacketal.,2009). etal.,2010),inhibitsV-ATPaseactivityviathepHluorinscreening Ebselen exhibits anti-fungal activity against wild-type strains of method. C. albicans (Soteropoulos etal., 2000; Bouhafs and Jarstrand, Alexidine dihydrochloride, thonzonium bromide, and disul- 2002;Wojtowiczetal.,2004)aswellasfluconazole-resistantstrains firam also inhibit V-ATPase in isolated C. albicans vacuoles. (Billack etal.,2009). These results again demonstrate the prece- Alexidine dihydrochloride and thonzonium bromide also cause dencethattargetingcomponentsof theV-ATPasepathway,even general cellular toxicity in intact C. albicans cells (Chan etal., via a downstream element such as Pma1p, can circumvent the 2012). Thesedatasuggestthatthesepre-existingdrugscouldbe drug resistance that has developed against presently available repurposedasanti-fungaltherapies.Indeed,themajorityofcom- therapies. poundsinthePrestwickChemicalLibraryhaveknownsafetyand toxicityprofiles(Wermuth,2004),makingdrugrepurposingaless HYPOTHETICALAPPROACHESFORTARGETINGV-ATPase dauntingtaskthandenovodrugdiscovery. THEDEVELOPMENTOFNEWANTI-FUNGALTREATMENTSAGAINST V-ATPaseMUSTINVOLVENOVELSTRATEGIESFORIDENTIFYING AZOLETHERAPY THERAPEUTICTARGETS Azoles are a class of antifungal agents that are commonly used Selectivityforfungalpathogensoverinnocuoushosttissueisone (cid:2) to treat fungal infections in the clinical setting. Azoles inhibit criticaltargetingfactortoconsider.TheV c subunitofV-ATPase, o C-14α-demethylase, an enzyme necessary for the conversion of encodedbyVMA11,isapromisingcandidatetarget(Parra,2012). (cid:2) lanosteroltoergosterol,anessentialcomponentof fungalmem- TheV c subunitisfoundspecificallyinfungiandlacksamam- o branes(Chapmanetal.,2008).Atleastfourergosterolbiosynthesis malian homolog (Figure 1). Promisingly, previous studies have genes(ERG3,ERG4,ERG5,andERG11)areaffectedbyazoles.The demonstrated that C. albicans null mutants of vma11 do not generalmembranedisruptionresultingfromazoletreatmentalters properly acquire iron from hemoglobin, a critical virulence fac- the activity of several membrane-bound transporters and chan- tor within host tissue (Weissman etal.,2008). Future structural (cid:2) nelsincludingthoseassociatedwiththetransportofaminoacids studies of the V c subunit will aid in the rational design of a o andothernutrients,chitinsynthesis,andmitochondrialoxidation fungal-specificanti-V-ATPasedrug. (VandenBossche,1985;Barrett-Beeetal.,1991;Georgopapadakou MostfungalV-ATPasesubunitsareencodedbyasinglegene; andWalsh,1996). the V a subunit is the only subunit encoded by two isoforms. o Forsometime,itwasassumedthatazolescausedfungaltoxi- Mammalian V-ATPases are strikingly different, with seven dif- cityprimarilythroughdamagetothecellmembraneresultingin ferentsubunitsdisplayingisoformvariation(Jefferiesetal.,2008; cellpermeabilityandlysis(Chapmanetal.,2008).However,recent Figure 1). This drastic difference between fungi and mammals workhasuncoveredacriticalroleforergosterolinV-ATPasefunc- could be exploited for fungal-specific drug development. For tion.InS.cerevisiae,mutantsdefectiveinergosterolbiosynthesis example, theV C subunit exists as three isoforms in mammals. 1 display alkaline vacuoles and the vma phenotype (Zhang etal., Ifaninhibitorisdesignedtospecificallytargetadomainoffungal 2010).Surprisingly,theV-ATPaseholoenzymeisproperlyassem- V Cthatismissingfromoneormoreofthemammalianisoforms, 1 bledatthevacuolarmembranedespiteergosteroldepletion.The allcellularV-ATPaseactivitywillceaseinthefungalpathogenwhile mutant phenotypes instead appear to result from reduced ATP the non-targeted mammalian isoforms compensate and main- hydrolysis and proton pumping within the V-ATPase. Flucona- tainV-ATPaseactivityinthehostcell. Thisstrategywillrequire zoletreatmentofC.albicanscellsalsoresultsinalkalinevacuoles high-resolutionstructuresofallfungalandmammalianisoforms (Zhangetal.,2010),furthersolidifyingthatazolesfunctioninpart andisthereforealonger-rangepossibility.However,itremainsa throughinhibitionofV-ATPase. fascinatingoptionforfungal-specificdrugtargeting. www.frontiersin.org January2014|Volume5|Article4|5 “fphar-05-00004” — 2014/1/24 — 16:34 — page 5 — #5 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting V-ATPase activity is regulated in part by reversible disassem- alkalinizationofthecytoplasmisageneraldeterminantoffungal bly,theprocessbywhichtheV andV sectorsseparatefromone virulence (Stewart etal.,1988), and CapHluorin-mediated drug 1 o another to prevent ATP hydrolysis and proton transport (Kane screensmayresultintherapiddiscoveryofnewanti-fungalthera- andParra,2000;Kane,2006).Reversibledisassemblyistriggered piesthatfunctionindependentlyofV-ATPase.Previousstudiesin primarilybyglucosedeprivation, althoughextracellularpHand S.cerevisiaeprovedthefeasibilityofmodifyingpHluorinfortar- salt stress are thought to contribute to the process. In mam- getingtospecificcellularcompartmentssuchastheGolgi(Tarsio mals, cell-specific regulatory pathways also control disassembly etal.,2011).CapHluorinwillfacilitatesimilarstudiestoexamine inatissue-specificmanner(Kane,2012).DisassemblyinC.albi- the importance of organelle-specificV-ATPase function and pH cans hasnotbeenstudied,butconservedsimilaritiesbetweenS. homeostasisinC.albicans.Importantly,theCapHluorinconstruct cerevisiae and mammals suggest C. albicans will utilize similar optimizedfornon-canonicalcodonusewillenablecytosolicpH pathways. Notably, the V a subunit and organelle environment measurementsnotjustinC.albicans,butinallfungalspeciesthat o appeartoregulatedisassemblyinS.cerevisiae;Vph1p-containing utilizetheCTGclade,includingthehumanpathogensC.dublin- complexes disassociate upon glucose deprivation while Stv1p- iensis,C.tropicalis,C.parapsilosis,andC.lusitaniae(Paponetal., containing complexes are less sensitive (Kawasaki-Nishi etal., 2012). 2001). In contrast, mammalian cells contain fourV a isoforms o localizedtodifferenttissues.Thissuggeststhatdifferencesiniso- ACKNOWLEDGMENTS form structure and interaction, localization, or susceptibility to Theauthorsgratefullyacknowledgesupport,inwholeorinpart, environmental cues could be exploited for fungal-specific drug fromtheNationalInstitutesofHealth(NIH),Bethesda,Maryland, developmentasdescribedpreviously.Alternatively,indirectlytar- USA,includingGrants5R01GM086495(toKarlettJ.Parra)and geting the regulator proteins involved in disassembly may allow K12GM088021(toSummerR.Hayek). forfungal-specificinhibitionofV-ATPaseactivity(Kane,2012). KEYCONCEPTS Finally, Pma1p is a fungal-specific protein with no known mammalianhomologs.SimultaneoustargetingofbothV-ATPase VACUOLARH+-ATPase(V-ATPase)PUMPSARELARGEMULTI-SUBUNIT and Pma1p should therefore disrupt both vacuolar and cyto- MOLECULARMOTORSTHATCOUPLEACTIVETRANSPORTOFPROTONS plasmic pH homeostasis in fungi versus vacuolar pH alone in WITHATPHYDROLYSIS mammalian cells. This dual approach may thereby prove more V-ATPaseactivityisrequiredforacidificationofintracellularcom- detrimental to the fungal pathogen than the host cell. This partmentsandgeneratesandsustainsthepHgradientrequiredfor methodisalsoadvantageousinthatitcanbeachievedeitherby functionoftheendomembranesystemorganelles. creationofanovelV-ATPase/Pma1pdualinhibitororbyadmin- CandidaalbicansISTHEMOSTFREQUENTLYDIAGNOSEDFUNGAL istration of an anti-fungal drug cocktail consisting of presently PATHOGEN available therapies. Additionally, as Pma1p is a plasma mem- Although it exists commensally with humans, it can cause braneproteinwithaccesstotheextracellularspace, anti-Pma1p life-threateningbloodinfectionsunderoptimalpathogeniccon- drugs may function regardless of accumulation within the fun- ditions. C. albicans has developed resistance to many currently gal cell. This possibility is highly advantageous, as drug uptake availableanti-fungaldrugs,andmortalityratescanreach35%even often limits efficacy in fungi due to a lack of specific uptake withpropertreatment. Thereisthereforeadireneedtodevelop systems. newanti-fungaltherapies. ANOVELHIGH-THROUGHPUTMETHODFORFUTURE CandidaalbicansVIRULENCEISREGULATEDBYpHATTHE V-ATPaseDRUGDISCOVERYINC.albicans EXTRACELLULAR,VACUOLAR,ANDCYTOPLASMICLEVEL Ourneedforanti-V-ATPasetherapiesgrowsincreasinglycritical ExtracellularpHtriggersamorphologicalswitchtothepathogenic as we improve our understanding of the function of V-ATPase form of the fungus. Vacuolar acidification allows for activa- infungalvirulence.However,directscreeningforanti-V-ATPase tion/secretion of virulence enzymes. Cytoplasmic alkalinization drugsinC.albicans istypicallyhinderedbythenon-availability precedestheformationofgermtubesduringC.albicansfilamen- of high-throughput screening tools in the pathogenic fungi. We tation. previouslydemonstratedthepracticalutilityofmeasuringcytoso- licpHasasurrogateforV-ATPasefunctioninahigh-throughput GENETICSTUDIESINVARIOUSPATHOGENICFUNGIHAVE screenforinhibitorsofS.cerevisiaeV-ATPase(Chanetal.,2012). ESTABLISHEDALINKBETWEENV-ATPaseACTIVITY,VACUOLAR This method uses pHluorin, a pH-sensitive GFP construct that ACIDIFICATION,ANDFUNGALVIRULENCE canbestablytransformed,therebyavoidingexpensiveandtime- StudiesinHistoplasmacapsulatum,Cryptococcusneoformans,and consumingsingle-usedyes.Recently,Ullahetal.(2013) werethe Candida albicans have demonstrated that loss of all cellular V- firsttosuccessfullyexpresspHluorininapathogenicfungus, C. ATPaseleadstoalkalinevacuolesandahostofinvitroandinvivo glabrata.However,non-canonicalcodonuseprecludesthedirect virulencedefects. applicationoftheexistingpHluorinconstructinC.albicans. Our lab is currently working to create a pHluorin con- V-ATPaseISANATTRACTIVETARGETFORDRUGDISCOVERY struct optimized for C. albicans (CapHluorin) that will enable Current anti-fungal therapies that involve the V-ATPase path- easy,inexpensive,andhigh-throughputmeasurementof cytoso- way include direct pharmacological inhibition of V-ATPase, the licpHforuseinscreeningforV-ATPaseinhibitors.Additionally, clinically prescribed azole class of drugs, and Pma1p inhibitors. FrontiersinPharmacology|ExperimentalPharmacologyandDrugDiscovery January2014|Volume5|Article4|6 “fphar-05-00004” — 2014/1/24 — 16:34 — page 6 — #6 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting However, the emergence of multidrug resistant strains of C. albicans is a multifunctional protein that interacts with the putative vacuo- albicansmakesadditionaldrugdiscoveryimperative. lar H+ -ATPase subunit Vma7p. Int. J. Med. Microbiol. 295, 57–66. doi: 10.1016/j.ijmm.2004.12.007 Erickson,T.,Liu,L.,Gueyikian,A.,Zhu,X.,Gibbons,J.,andWilliamson,P.R. THEDEVELOPMENTOFNEWANTI-FUNGALTREATMENTSAGAINST (2001).MultiplevirulencefactorsofCryptococcusneoformansaredependenton V-ATPaseMUSTINVOLVENOVELSTRATEGIESFORIDENTIFYING VPH1.Mol.Microbiol.42,1121–1131.doi:10.1046/j.1365-2958.2001.02712.x THERAPEUTICTARGETS Finnigan,G.C.,Hanson-Smith,V.,Stevens,T.H.,andThornton,J.W.(2012). Suchstrategiesincludetargetingthefungal-specificV c(cid:2)subunit, Evolutionofincreasedcomplexityinamolecularmachine.Nature481,360–364. o doi:10.1038/nature10724 utilizing differences in isoform composition and complex dis- Forgac, M. (2007). VacuolarATPases: rotary proton pumps in physiology and assembly between fungi and mammals, dual V-ATPase/Pma1p pathophysiology.Nat.Rev.Mol.CellBiol.8,917–929.doi:10.1038/nrm2272 inhibition,andcreationofahigh-throughputscreeninC.albicans. Georgopapadakou,N.H.,andWalsh,T.J.(1996).Antifungalagents:chemother- apeutictargetsandimmunologicstrategies.Antimicrob.AgentsChemother.40, 279–291. REFERENCES Hameed,S.,andFatima,Z.(2013).Novelregulatorymechanismsofpathogenic- Barrett-Bee,K.,Newboult,L.,andPinder,P.(1991). Biochemicalchangesasso- ity and virulence to combat MDR in. Int. J. Microbiol. 2013, 240209. doi: ciated with the antifungal action of the triazole ICI 153,066 on Candida 10.1155/2013/240209 albicansandTrichophytonquinckeanum.FEMSMicrobiol.Lett.63,127–131.doi: Hilty,J.,Smulian,A.G.,andNewman,S.L.(2008).TheHistoplasmacapsulatum 10.1111/j.1574-6968.1991.tb04517.x vacuolarATPase is required for iron homeostasis, intracellular replication in Billack, B., Santoro, M., andLau-Cam, C.(2009). Growthinhibitoryactionof macrophagesandvirulenceinamurinemodelofhistoplasmosis.Mol.Microbiol. ebselenonfluconazole-resistantCandidaalbicans:roleoftheplasmamembrane 70,127–139.doi:10.1111/j.1365-2958.2008.06395.x H+-ATPase.Microb.DrugResist.15,77–83.doi:10.1089/mdr.2009.0872 Horn,D.L.,Neofytos,D.,Anaissie,E.J.,Fishman,J.A.,Steinbach,W.J.,Olyaei, Bouhafs, R. K., and Jarstrand, C. (2002). Effects of antioxidants on surfactant A.J.,etal.(2009).Epidemiologyandoutcomesofcandidemiain2019patients: peroxidationbystimulatedhumanpolymorphonuclearleukocytes.FreeRadic. datafromtheprospectiveantifungaltherapyallianceregistry.Clin.Infect.Dis48, Res.36,727–734.doi:10.1080/10715760290032593 1695–1703.doi:10.1086/599039 Bowman,E.J.,andBowman,B.J.(2005).V-ATPasesasdrugtargets.J.Bioenerg. Huang,C.,andChang,A.(2011).pH-dependentcargosortingfromtheGolgi.J. Biomembr.37,431–435.doi:10.1007/s10863-005-9485–9489 Biol.Chem.286,10058–10065.doi:10.1074/jbc.M110.197889 Bowman,E.J.,O’Neill,F.J.,andBowman,B.J.(1997).Mutationsofpma-1,the Huss,M.,andWieczorek,H.(2009).InhibitorsofV-ATPases:oldandnewplayers. geneencodingtheplasmamembraneH+-ATPaseofNeurosporacrassa,suppress J.Exp.Biol.212,341–346.doi:10.1242/jeb.024067 inhibitionofgrowthbyconcanamycinA,aspecificinhibitorofvacuolarATPases. Ibrahim-Granet, O., Philippe, B., Boleti, H., Boisvieux-Ulrich, E., Grenet, D., J.Biol.Chem.272,14776–14786.doi:10.1074/jbc.272.23.14776 Stern, M., etal. (2003). Phagocytosis and intracellular fate of Aspergillus Bowman, E. J., Siebers, A., and Altendorf, K. (1988). Bafilomycins: a class of fumigatus conidiainalveolarmacrophages. Infect. Immun. 71, 891–903. doi: inhibitorsofmembraneATPasesfrommicroorganisms,animalcells,andplant 10.1128/IAI.71.2.891-903.2003 cells.Proc.Natl.Acad.Sci.U.S.A.85,7972–7976.doi:10.1073/pnas.85.21.7972 Jefferies,K.C.,Cipriano,D.J.,andForgac,M.(2008). Function,structureand Brett,C.L.,Tukaye,D.N.,Mukherjee,S.,andRao,R.(2005).Theyeastendosomal regulationofthevacuolar(H+)-ATPases.Arch.Biochem.Biophys.476,33–42. Na+K+/H+exchangerNhx1regulatescellularpHtocontrolvesicletrafficking. doi:10.1016/j.abb.2008.03.025 Mol.Biol.Cell16,1396–1405.doi:10.1091/mbc.E04-11–0999 Jia,N.,Arthington-Skaggs,B.,Lee,W.,Pierson,C.A.,Lees,N.D.,Eckstein,J.,etal. Bruckmann,A.,Kunkel,W.,Hartl,A.,Wetzker,R.,andEck,R.(2000).Aphos- (2002).CandidaalbicanssterolC-14reductase,encodedbytheERG24gene,asa phatidylinositol3-kinaseofCandidaalbicansinfluencesadhesion,filamentous potentialantifungaltargetsite.Antimicrob.AgentsChemother.46,947–957.doi: growthandvirulence.Microbiology146(Pt.11),2755–2764. 10.1128/AAC.46.4.947-957.2002 Calvert, C.M., andSanders, D.(1995). Inositoltrisphosphate-dependentand- Johnson,R.M.,Allen,C.,Melman,S.D.,Waller,A.,Young,S.M.,Sklar,L.A., independentCa2+mobilizationpathwaysatthevacuolarmembraneofCandida etal.(2010).Identificationofinhibitorsofvacuolarproton-translocatingATPase albicans.J.Biol.Chem.270,7272–7280.doi:10.1074/jbc.270.13.7272 pumpsinyeastbyhigh-throughputscreeningflowcytometry.Anal. Biochem. Chan, C. Y., Prudom, C., Raines, S. M., Charkhzarrin, S., Melman, S. D., 398,203–211.doi:10.1016/j.ab.2009.12.020 DeHaro, L.P., etal. (2012). InhibitorsofV-ATPaseprotontransportreveal Kane, P. M. (2006). The where, when, and how of organelle acidification by uncouplingfunctionsoftetherlinkingcytosolicandmembranedomainsofV0 theyeastvacuolarH+-ATPase. Microbiol. Mol. Biol. Rev. 70, 177–191. doi: subunita(Vph1p). J.Biol. Chem. 287, 10236–10250. doi: 10.1074/jbc.M111. 10.1128/MMBR.70.1.177-191.2006 321133 Kane,P.M.(2007).ThelongphysiologicalreachoftheyeastvacuolarH+-ATPase. Chan,G.,Hardej,D.,Santoro,M.,Lau-Cam,C.,andBillack,B.(2007).Evaluation oftheantimicrobialactivityofebselen:roleoftheyeastplasmamembraneH+- J.Bioenerg.Biomembr.39,415–421.doi:10.1007/s10863-007-9112-z ATPase.J.Biochem.Mol.Toxicol.21,252–264.doi:10.1002/jbt.20189 Kane, P. M. (2012). Targeting reversible disassembly as a mechanism of con- Chapman,S.W.,Sullivan,D.C.,andCleary,J.D.(2008).Insearchoftheholygrail trolling V-ATPase activity. Curr. Protein Peptide Sci. 13, 117–123. doi: ofantifungaltherapy.Trans.Am.Clin.Climatol.Assoc.119,197–215;discussion 10.2174/138920312800493142 215–196. Kane,P.M.,andParra,K.J.(2000).Assemblyandregulationoftheyeastvacuolar Chavez,C.,Bowman,E.J.,Reidling,J.C.,Haw,K.H.,andBowman,B.J.(2006). H(+)-ATPase.J.Exp.Biol.203,81–87. AnalysisofstrainswithmutationsinsixgenesencodingsubunitsoftheV-ATPase: Karkowska-Kuleta,J.,Rapala-Kozik,M.,andKozik,A.(2009).Fungipathogenic eukaryotesdifferinthecompositionoftheV0sectoroftheenzyme.J.Biol.Chem. to humans: molecular bases of virulence of Candida albicans, Cryptococcus 281,27052–27062.doi:10.1074/jbc.M603883200 neoformansandAspergillusfumigatus.ActaBiochim.Pol.56,211–224. Davis, D.A.(2009). HowhumanpathogenicfungisenseandadapttopH:the Kaur,S.,andMishra,P.(1991).Dimorphism-associatedchangesinplasmamem- linktovirulence.Curr.Opin.Microbiol.12,365–370.doi:10.1016/j.mib.2009. braneH(+)-ATPaseactivityofCandidaalbicans.Arch.Microbiol.156,412–415. 05.006 doi:10.1007/BF00248719 Doolittle, W.F.(2012). Evolutionarybiology: aratchetforproteincomplexity. Kawasaki-Nishi, S., Nishi, T., and Forgac, M. (2001). Yeast V-ATPase com- Nature481,270–271.doi:10.1038/nature10816 plexescontainingdifferentisoformsofthe100-kDaa-subunitdifferincoupling Drose, S., Bindseil, K.U., Bowman, E.J., Siebers,A., Zeeck,A., andAltendorf, efficiency and in vivo dissociation. J. Biol. Chem. 276, 17941–17948. doi: K.(1993). Inhibitoryeffectof modifiedbafilomycinsandconcanamycinson 10.1074/jbc.M010790200 P- and V-type adenosinetriphosphatases. Biochemistry 32, 3902–3906. doi: Klotz,S.A.,Chasin,B.S.,Powell,B.,Gaur,N.K.,andLipke,P.N.(2007).Polymi- 10.1021/bi00066a008 crobialbloodstreaminfectionsinvolvingCandidaspecies: analysisof patients Eck, R., Nguyen, M., Gunther, J., Kunkel, W., and Zipfel, P. F. (2005). The andreviewof theliterature. Diagn. Microbiol. Infect. Dis. 59, 401–406. doi: phosphatidylinositol3-kinaseVps34pofthehumanpathogenicyeastCandida 10.1016/j.diagmicrobio.2007.07.001 www.frontiersin.org January2014|Volume5|Article4|7 “fphar-05-00004” — 2014/1/24 — 16:34 — page 7 — #7 Hayeketal. TheV-ATPasemodelforanti-fungaltargeting Mahanty,S.K.,Gupta,P.,Banerjee,U.,Fotedar,R.,andPrasad,R.(1990).Defec- Soteropoulos,P.,Vaz,T.,Santangelo,R.,Paderu,P.,Huang,D.Y.,Tamas,M.J.,etal. tiveplasmamembraneH(+)-ATPaseororthovanadateresistantmutantsfrom (2000).MolecularcharacterizationoftheplasmamembraneH(+)-ATPase,an Candidaalbicans,apathogenicyeast.Biochem.Int.22,11–20. antifungaltargetinCryptococcusneoformans.Antimicrob.AgentsChemother.44, Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, 2349–2355.doi:10.1128/AAC.44.9.2349-2355.2000 M. A., etal. (1994). STV1 gene encodes functional homologue of 95-kDa Stewart,E.,Gow,N.A.,andBowen,D.V.(1988).Cytoplasmicalkalinizationduring yeast vacuolar H(+)-ATPase subunit Vph1p. J. Biol. Chem. 269, 14064– germtubeformationinCandidaalbicans.J.Gen.Microbiol.134,1079–1087.doi: 14074. 10.1099/00221287-134-5-1079 Marshansky,V.,andFutai,M.(2008).TheV-typeH+-ATPaseinvesiculartraffick- Stewart,E.,Hawser,S.,andGow,N.A.(1989).ChangesininternalandexternalpH ing:targeting,regulationandfunction.Curr.Opin.CellBiol.20,415–426.doi: accompanyinggrowthofCandidaalbicans:studiesofnon-dimorphicvariants. 10.1016/j.ceb.2008.03.015 Arch.Microbiol.151,149–153.doi:10.1007/BF00414430 Martinez-Munoz, G.A., and Kane, P. (2008). Vacuolar and plasma membrane Sudbery,P.E.(2011).GrowthofCandidaalbicanshyphae.Nat.Rev.Microbiol.9, protonpumpscollaboratetoachievecytosolicpHhomeostasisinyeast.J.Biol. 737–748.doi:10.1038/nrmicro2636 Chem.283,20309–20319.doi:10.1074/jbc.M710470200 Sun-Wada, G. H., and Wada, Y. (2010). Vacuolar-type proton pump ATPases: Monk,B.C.,Kurtz,M.B.,Marrinan,J.A.,andPerlin,D.S.(1991).Cloningand rolesofsubunitisoformsinphysiologyandpathology.Histol.Histopathol.25, characterizationoftheplasmamembraneH(+)-ATPasefromCandidaalbicans. 1611–1620. J.Bacteriol.173,6826–6836. Sun-Wada,G.H.,Wada,Y.,andFutai,M.(2003).VacuolarH+pumpingATPases Monk,B.C.,Niimi,M.,andShepherd,M.G.(1993).TheCandidaalbicansplasma inluminalacidicorganellesandextracellularcompartments:commonrotational membraneandH(+)-ATPaseduringyeastgrowthandgermtubeformation.J. mechanismanddiversephysiologicalroles.J.Bioenerg.Biomembr.35,347–358. Bacteriol.175,5566–5574. doi:10.1023/A:1025780932403 Naglik,J.R.,Challacombe,S.J.,andHube,B.(2003).Candidaalbicanssecreted Tarsio,M.,Zheng,H.,Smardon,A.M.,Martinez-Munoz,G.A.,andKane,P.M. aspartylproteinasesinvirulenceandpathogenesis.Microbiol.Mol.Biol.Rev.67, (2011).ConsequencesoflossofVph1protein-containingvacuolarATPases(V- 400–428.doi:10.1128/MMBR.67.3.400-428.2003 ATPases)foroverallcellularpHhomeostasis.J.Biol.Chem.286,28089–28096. Oot, R. A., and Wilkens, S. (2012). Subunit interactions at the V1-Vo inter- doi:10.1074/jbc.M111.251363 face in yeast vacuolar ATPase. J. Biol. Chem. 287, 13396–13406. doi: Toei,M.,Saum,R.,andForgac,M.(2010).Regulationandisoformfunctionofthe 10.1074/jbc.M112.343962 V-ATPases.Biochemistry49,4715–4723.doi:10.1021/bi100397s Palanisamy, S.K., Ramirez, M.A., Lorenz, M., andLee, S.A.(2010). Candida Ullah,A.,Lopes,M.I.,Brul,S.,andSmits,G.J.(2013).IntracellularpHhomeostasis albicansPEP12isrequiredforbiofilmintegrityandinvivovirulence.Eukaryot. inCandidaglabrataininfection-associatedconditions.Microbiology159,803– Cell.9,266–277.doi:10.1128/EC.00295–299 813.doi:10.1099/mic.0.063610–63610 Papon, N., Courdavault,V., Clastre, M., Simkin,A.J., Creche, J., andGiglioli- VandenBossche,H.(1985). Biochemicaltargetsforantifungalazolederivatives: Guivarc’h,N.(2012).DeusexCandidagenetics:overcomingthehurdlesforthe hypothesis on the mode of action. Curr. Top. Med. Mycol. 1, 313–351. doi: developmentofamoleculartoolboxintheCTGclade.Microbiology158,585–600. 10.1007/978-1-4613-9547-8_12 doi:10.1099/mic.0.055244–55240 Veses, V., Richards, A., and Gow, N. A. (2008). Vacuoles and fungal biol- Parra,K.J.(2012).“VacuolarATPase(V-ATPase)amodelprotonpumpforantifun- ogy. Curr. Opin. Microbiol. 11, 503–510. doi: 10.1016/j.mib.2008.09.017doi: galdrugdiscovery,”inEmergingStrategiesforAntimicrobialDrugDiscovery,eds 10.1016/j.mib.2008.09.017 G.P.TegosandE.Mylonakis(Oxfordshire:CABI),89–100. Weissman,Z.,Shemer,R.,Conibear,E.,andKornitzer,D.(2008).Anendocytic Patenaude,C.,Zhang,Y.,Cormack,B.,Kohler,J.,andRao,R.(2013). Essential mechanismforhaemoglobin-ironacquisitioninCandidaalbicans.Mol.Micro- roleforvacuolaracidificationinCandidaalbicansvirulence.J.Biol.Chem.288, biol. 69, 201–217. doi: 10.1111/j.1365-2958.2008.06277.xdoi: 10.1111/j.1365- 26256–26264.doi:10.1074/jbc.M113.494815 2958.2008.06277.x Perzov,N.,Nelson,H.,andNelson,N.(2000).Altereddistributionoftheyeast Wermuth,C.G.(2004).Selectiveoptimizationofsideactivities:anotherwayfor plasmamembraneH+-ATPaseasafeatureofvacuolarH+-ATPasenullmutants. drugdiscovery.J.Med.Chem.47,1303–1314.doi:10.1021/jm030480f J.Biol.Chem.275,40088–40095.doi:10.1074/jbc.M007011200 Wojtowicz,H.,Kloc,K.,Maliszewska,I.,Mlochowski,J.,Pietka,M.,andPiasecki,E. Pfaller, M. A., and Diekema, D. J. (2007). Epidemiology of invasive candidia- (2004).Azaanaloguesofebselenasantimicrobialandantiviralagents:synthesis sis:apersistentpublichealthproblem.Clin.Microbiol.Rev.20,133–163.doi: andproperties.Farmaco59,863–868.doi:10.1016/j.farmac.2004.07.003 10.1128/CMR.00029–26 Zhang, Y. Q., Gamarra, S., Garcia-Effron, G., Park, S., Perlin, D. S., and Poltermann, S., Nguyen, M., Gunther, J., Wendland, J., Hartl, A., Kunkel, W., Rao, R. (2010). Requirement for ergosterol in V-ATPase function underlies etal.(2005).TheputativevacuolarATPasesubunitVma7pofCandidaalbicansis antifungalactivityofazoledrugs.PLoSPathog.6:e1000939.doi:10.1371/jour- involvedinvacuoleacidification,hyphaldevelopmentandvirulence.Microbiology nal.ppat.1000939 151,1645–1655.doi:10.1099/mic.0.27505–27500 Rahman,S.,Yamato,I.,Saijo,S.,Mizutani,K.,Ishizuka-Katsura,Y.,Ohsawa,N.,etal. ConflictofInterestStatement:Theauthorsdeclarethattheresearchwasconducted (2013).Biochemicalandbiophysicalpropertiesofinteractionsbetweensubunits intheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstrued of theperipheralstalkregionof humanV-ATPase. PLoSONE 8:e55704. doi: asapotentialconflictofinterest. 10.1371/journal.pone.0055704 Raines,S.M.,Rane,H.S.,Bernardo,S.M.,Binder,J.L.,Lee,S.A.,andParra, Received:03November2013;accepted:06January2014;publishedonline:27January K.J.(2013).Deletionofvacuolarproton-translocatingATPaseV(o)aisoforms 2014. clarifiestheroleofvacuolarpHasadeterminantofvirulence-associatedtraits Citation:HayekSR,LeeSAandParraKJ(2014)Advancesintargetingthevacuolar in Candida albicans. J. Biol. Chem. 288, 6190–6201. doi: 10.1074/jbc.M112. proton-translocatingATPase(V-ATPase)foranti-fungaltherapy.Front.Pharmacol. 426197 5:4.doi:10.3389/fphar.2014.00004 Rane,H.S.,Bernardo,S.M.,Raines,S.M.,Binder,J.L.,Parra,K.J.,andLee,S.A. This article was submitted to Experimental Pharmacology and Drug Discovery, a (2013).CandidaalbicansVMA3isnecessaryforV-ATPaseassemblyandfunction sectionofthejournalFrontiersinPharmacology. andcontributestosecretionandfilamentation.Eukaryot.Cell.12,1369–1382. Copyright©2014Hayek,LeeandParra.Thisisanopen-accessarticledistributedunder doi:10.1128/EC.00118–113 thetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distribution Slesiona,S.,Gressler,M.,Mihlan,M.,Zaehle,C.,Schaller,M.,Barz,D.,etal.(2012). orreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensor Persistenceversusescape:AspergillusterreusandAspergillusfumigatusemploy arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewith differentstrategiesduringinteractionswithmacrophages.PLoSONE7:e31223. acceptedacademicpractice.Nouse,distributionorreproductionispermittedwhich doi:10.1371/journal.pone.0031223 doesnotcomplywiththeseterms. FrontiersinPharmacology|ExperimentalPharmacologyandDrugDiscovery January2014|Volume5|Article4|8 “fphar-05-00004” — 2014/1/24 — 16:34 — page 8 — #8