ebook img

Advances in Steam Turbines for Modern Power Plants PDF

664 Pages·2022·90.827 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Steam Turbines for Modern Power Plants

Advances in Steam Turbines for Modern Power Plants Woodhead Publishing Series in Energy Advances in Steam Turbines for Modern Power Plants Second Edition Edited by Tadashi Tanuma Teikyo University, Tokyo, Japan WoodheadPublishingisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom Copyright©2022ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorageand retrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowtoseek permission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professionalpractices, ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatter ofproductsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods, products,instructions,orideascontainedinthematerialherein. ISBN:978-0-12-824359-6(print) ISBN:978-0-323-91551-9(online) ForinformationonallWoodheadPublishingpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:CharlotteCockle AcquisitionsEditor:RachelPomery EditorialProjectManager:ChrisHockaday ProductionProjectManager:DebasishGhosh CoverDesigner:ChristianJ.Bilbow TypesetbyMPSLimited,Chennai,India Contents Listofcontributors xvii Part I Steam Turbine Cycles and Cycle Design Optimization 1 1 Introductiontosteamturbinesforpowerplants 3 T.Tanuma 1.1 Featuresofsteamturbines 3 1.2 Rolesofsteamturbinesinpowergeneration 6 1.3 Technologytrendsofsteamturbines 7 1.3.1 Steamturbinesforthermalpowerplants (exceptcombinedcycle) 7 1.3.2 Steamturbinesforcombined-cyclepowerplants 9 1.3.3 Steamturbinesfornuclearpowerplants 9 1.3.4 Steamturbinesforgeothermal,solarthermal,and bioenergypowerplants 9 1.4 Theaimofthisbook 9 References 10 2 Steamturbinecyclesandcycledesignoptimization: theRankinecycle,thermalpowercycles,andintegrated gasification-combinedcyclepowerplants 11 A.OhjiandM.Haraguchi 2.1 Introduction 11 2.2 Basiccyclesofsteamturbineplants 11 2.2.1 Rankinecycle 12 2.2.2 Theoretical thermalefficiencyoftheRankinecycle 14 2.2.3 Influenceofdesignparameteronthermalefficiency 16 2.2.4 Reheatcycle 18 2.2.5 Regeneratingcycle 19 2.2.6 Reheat(cid:1)regeneratingcycle 20 2.2.7 Calculationofthermalefficiencyforthethermalpowerstation 21 2.3 Typesofsteamturbines 23 2.3.1 Condensingturbine 23 2.3.2 Backpressureturbine 23 2.3.3 Extractioncondensingturbine 25 2.3.4 Mixed-pressureturbine 26 vi Contents 2.4 Varioussteamturbinecyclesandtechnologiestoimprovethermal efficiency 29 2.4.1 Steamturbinecycleforpetrochemicalplant 29 2.4.2 Gas-andsteam-turbine-combinedcycle 30 2.4.3 Cogenerationsystem 32 2.4.4 Ultra-supercriticalpressurethermalpowerplant 32 2.4.5 AdvancedUSCpressurethermalpowerplant 36 2.4.6 Integratedcoalgasification-combinedcyclepowerplant 36 2.4.7 Advancedcycle 38 2.5 Conclusion 40 References 40 3 Steamturbinecyclesandcycledesignoptimization:advanced ultra-supercriticalthermalpowerplantsandnuclearpowerplants 41 J.Tominaga 3.1 Introduction 41 3.2 Advancedultra-supercriticalthermalpowerplants 41 3.2.1 Progressofsteamconditionimprovementin fossil-firedpowerplants 41 3.2.2 Cycleandturbinedesignoptimization 43 3.2.3 Featuresofadvancedultra-supercriticalturbinesand technicalconsiderations 46 3.3 Nuclearpowerplants 48 3.3.1 Cycleandfeaturesofboilingwaterreactor 48 3.3.2 Cycleandfeaturesofpressurizedwaterreactor 51 3.3.3 Cycleandturbinedesignoptimization 53 3.3.4 Featuresofnuclearturbinesandtechnicalconsiderations 54 3.3.5 Featuresofsmallmodularreactor anditssteamturbine 55 3.4 Conclusion 58 Acknowledgments 59 References 59 4 Steamturbinecyclesandcycledesignoptimization:combined cyclepowerplants 61 RaubW.Smith 4.1 Definitions 61 4.2 Introductiontocombinedcyclepowerplants 63 4.2.1 Historyofgasturbinecombinedcycleplants 64 4.3 Combinedcyclethermodynamics 64 4.3.1 Thermalcycleoverview 64 4.3.2 Heatrecoveryconsiderations 69 4.3.3 Efficiencydefinitions 76 4.4 Marketsserved 80 4.4.1 Powergeneration 80 4.4.2 Cogeneration 80 4.4.3 Districtheating 81 Contents vii 4.4.4 Powergeneration1concentratedsolarpower 81 4.4.5 Integratedgasificationcombinedcycle 82 4.4.6 Carboncaptureandstorage 82 4.5 Majorplantsystemsoverview 87 4.5.1 Plantconfigurations:singleandmultishaft 87 4.5.2 Gasturbine 88 4.5.3 Heatrecoverysteamgenerator 91 4.5.4 Steamturbine 91 4.5.5 Balanceofplant 92 4.5.6 Gasturbinecombinedcycleplantdesignconsiderations 96 4.6 Combinedcyclestrends 100 4.6.1 Steamconditions 100 4.6.2 Alternatebottomingcycleworkingfluids 100 4.7 Conclusion 101 References 101 5 Steamturbinelifecyclecostevaluationsandcomparisonwith otherpowersystems 103 T.Nakata 5.1 Introduction 103 5.2 Costestimationandcomparisonwithotherpowersystems 104 5.3 Technologicallearning 106 5.3.1 Technologicalchangeandtechnologicallearning 106 5.3.2 ApplicationoftechnologicallearningonR&Dinvestment 107 5.4 Themodelingoftechnologicallearning 108 5.4.1 Learningcurvedefinition 108 5.4.2 Two-factorslearningcurve 111 5.4.3 Technologicallearningcombinedwithenergymodeling 111 5.4.4 Applicationtosustainableenergysystemdesign 113 5.5 Conclusions 114 References 114 Part II Steam Turbine Analysis, Measurement and Monitoring for Design Optimization 117 6 Designandanalysisforaerodynamicefficiencyenhancementof steamturbines 119 T.Tanuma 6.1 Introduction 119 6.2 Overviewoflossesinsteamturbines 119 6.3 Overviewofaerodynamicdesignofsteamturbines 124 6.4 Designandanalysisforaerodynamicefficiencyenhancement 126 6.4.1 Bladeprofiledesignandanalysis 126 6.4.2 Turbinebladeandstagedesignandanalysis 128 viii Contents 6.4.3 Designoptimizationofsteamturbinebladesandstages 131 6.5 Futuretrends 134 6.6 Conclusions 135 References 135 7 Mechanicaldesignandvibrationanalysisofsteamturbineblades 139 YasutomoKaneko 7.1 Categoriesofsteamturbinebladevibration 139 7.1.1 Forcedvibrationoftheblade 140 7.1.2 Self-excitedvibrationoftheblade 143 7.1.3 Vibrationduetomistunedphenomena 144 7.2 Mechanicaldesignoftheblade 145 7.2.1 Summaryofthemechanical designoftheblade 145 7.2.2 Analysisofnaturalfrequency 146 7.2.3 Analysisofresonantstressduetothestageinteractionforce 149 7.2.4 Analysisoftheresonantresponseduetotheshockload 150 7.2.5 Analysisofrandomvibration 153 7.2.6 Analysisofbladeflutter 154 7.2.7 Analysisofbladedamping 156 7.2.8 Analysisofmistunedsystem 157 7.3 Measurementandguidelineforbladevibration 159 Reference 161 8 Steamturbinerotordesignandrotordynamicsanalysis 163 YasutomoKaneko,RimpeiKawashitaandHiroshiKanki 8.1 Categoriesofsteamturbinerotorvibration 163 8.1.1 Forcedvibrationofasteamturbinerotor 164 8.1.2 Self-excitedvibrationofsteamturbinerotor 170 8.1.3 Torsionalvibration 176 8.2 Mechanicaldesignofsteamturbinerotors 178 8.2.1 Overviewofdifferentrotordesignandtechnology 178 8.2.2 Summaryofmechanicaldesign 179 8.2.3 Rotordynamicsanalysisofsteamturbinerotor 181 8.2.4 Evaluationofrotordynamics(lateralvibration) 186 8.2.5 Evaluationofrotordynamics(torsionalvibration) 190 8.3 Measurementandguidelinesforrotorvibration 190 8.3.1 Measurementofsteamturbinerotorvibration 190 8.3.2 Allowablerotorvibration 192 References 192 9 Steamturbinedesignforload-followingcapabilityandhighly efficientpartialoperation 195 AkinoriTani 9.1 Introduction 195 9.1.1 Shorteningthestart-uptimeofturbines 196 Contents ix 9.1.2 Increasingthemaximumloadofplants 196 9.1.3 Loweringtheminimumoperationloadofplants 196 9.1.4 Improvingtheload-followingcapability(controllability ofloadcontrol)ofplants 196 9.1.5 Improvingtheload-frequencyresponseofplants 196 9.1.6 Contributiontogridsystemstabilizationcapability 197 9.2 Solutionforgridcoderequirement 197 9.3 Load-frequencycontrolofthermalpowerplants 200 9.4 Currentcapacityofthermalpowergovernor-freeoperationand load-frequencycontrol 201 9.5 Overloadvalve 202 9.6 Requirementfortheaccuracy ofsimulationmodels 206 9.7 Conclusion 207 References 207 10 Analysisanddesignofwet-steamstages 209 S.SenooandA.J.White 10.1 Introduction 209 10.1.1 Anoverviewofwet-steam phenomena 210 10.1.2 Implicationsforturbinedesign 212 10.2 Basictheoryandgoverningequations 214 10.2.1 Gas-dynamicequations 214 10.2.2 Formationandgrowthoftheliquidphase 216 10.3 Numericalmethods 221 10.3.1 Evaluationofsteamproperties 222 10.3.2 FullyEulerianmethods 224 10.3.3 Thestandardmethodofmoments 225 10.3.4 MixedEulerian(cid:1)Lagrangiancalculations 226 10.3.5 Othermethods 228 10.3.6 Examplesofapplication 230 10.4 Measurementmethods 238 10.4.1 Finedroplets 238 10.4.2 Coarsewaterdroplets 240 10.4.3 Unsteadyflow 243 10.4.4 Pitotlossmeasurements 248 10.5 Designconsiderations 251 10.5.1 Performanceestimationinwetsteam 251 10.5.2 Waterdropleterosion 252 Acknowledgments 257 Notation 257 References 258 x Contents 11 Solidparticleerosionanalysisandprotectiondesignforsteam turbines 267 H.Nomoto 11.1 Introduction 267 11.2 Susceptibleareaoferosion 267 11.3 Considerationsonboilerdesignandplantdesign 269 11.4 Considerationsonturbinedesignandoperationmode 270 11.4.1 Sizeandnumberofblade 270 11.4.2 Operationalmode(nozzlegoverningandthrottle governing) 271 11.5 Resultoferosion 273 11.5.1 Efficiencydeterioration 273 11.5.2 Rotorvibration 276 11.6 Considerationsofparametersonerosionandcountermeasure 281 11.6.1 Effectofimpingeangle 281 11.6.2 Effectofimpingevelocity 281 11.6.3 Effectofmaterial 283 11.6.4 Coatings 283 11.7 Conclusion 286 References 286 12 Steamturbinemonitoringtechnology,validation,and verificationtestsforpowerplants 287 D.R.Cornell 12.1 Introductiontopowerplanttestingandmonitoring 287 12.2 Performancetypetesting 289 12.2.1 Acceptance testing 289 12.2.2 Testingofsteamturbinesinfossil-firedunits 289 12.2.3 Enthalpydroptest 291 12.2.4 Heatratedeterminationfromtesting 292 12.2.5 Full-scaleASMEPTC6test 292 12.2.6 AlternativetestASMEPTC6 294 12.2.7 ASMEPTC6Stest 295 12.2.8 Outputcapacitytest 295 12.2.9 Testingofsteamturbinesincombined-cycleunits 295 12.2.10 Testingofsteamturbinesinnuclearplants 297 12.3 Steamturbinecomponent-typetesting 299 12.3.1 Bladevibrationtesting 299 12.3.2 Steamturbinerotortraintesting 300 12.3.3 Steamturbinestructurestesting 301 12.3.4 Steamturbineaerodynamictesting 301 12.4 Steamturbinemonitoring 303 12.5 Summary 305 12.6 Powerplanttesting—alookahead 305 References 306

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.