Springer INdAM Series 18 Alessandro Michelangeli Gianfausto Dell'Antonio E ditors Advances in Quantum Mechanics Contemporary Trends and Open Problems Springer INdAM Series Volume 18 Editor-in-Chief G.Patrizio SeriesEditors C.Canuto G.Coletti G.Gentili A.Malchiodi P.Marcellini E.Mezzetti G.Moscariello T.Ruggeri Moreinformationaboutthisseriesathttp://www.springer.com/series/10283 Alessandro Michelangeli • Gianfausto Dell’Antonio Editors Advances in Quantum Mechanics Contemporary Trends and Open Problems 123 Editors AlessandroMichelangeli GianfaustoDell’Antonio InternationalSch.forAdvancedStudies InternationalSch.forAdvancedStudies SISSA SISSAandSapienzaUniversityofRome Trieste,Italy Trieste,Italy ISSN2281-518X ISSN2281-5198 (electronic) SpringerINdAMSeries ISBN978-3-319-58903-9 ISBN978-3-319-58904-6 (eBook) DOI10.1007/978-3-319-58904-6 LibraryofCongressControlNumber:2017942781 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This volume is a collection of recent contributions and up-to-date surveys on many contemporary trends in the mathematics of quantum mechanics, and more generally on mathematical problems arising in quantum many-body dynamics, quantumgraphtheory,coldatomsandunitarygases.Specialemphasisisdevotedto developmentof the specific mathematical tools needed, including linear and non- linear Schrödinger equations, topological invariants, non-commutative geometry, resonancesandoperatorextensiontheory. Most of the contributorsare leading international experts or recognised young researchersinmathematicalphysics,PDEtheoryandoperatortheory.Thematerial thattheypresentisthefruitofrecentstudiesthathavealreadybecomeareference inthecommunity.Theunderlyingmotivationfromcondensedmatterphysics,solid statephysicsandultra-coldatomphysics,andthetopicalityoftheresearchtopics, givethevolumeadistinctiveperspectiveattheedgeofmathematicsandphysics. A large part of the material was presented and discussed thoroughly on the occasionoftheINdAMinternationalmeetingentitled“ContemporaryTrendsinthe MathematicsofQuantumMechanics”,whichtookplaceinRomefrom4to8July 2016andwhichwehadthehonouroforganisingthankstoaverygenerousfunding andmosthelpfullogisticsupportfromINdAM.Theremainderofthematerialwas producedasafollow-uptothatmeetingorascloselyrelatedwork. First and foremost, our thanks go to the scientific board of INdAM and the responsibleadministrativestaffattheINdAMheadquartersinRomeforproviding sucha stimulatingatmosphereandallthenecessarypracticalhelp.We wouldalso like to warmly acknowledge all contributors and anonymous reviewers for their careful work and the quality of their reports. Finally, we extend our gratitude to the extremely supportive team of the INdAM Springer Series for their services throughouttheeditingandpublishingprocess. Trieste,Italy GianfaustoDell’Antonio Trieste,Italy AlessandroMichelangeli April2017 v Contents ShellInteractionsforDiracOperators ........................................ 1 NaiaraArrizabalaga CorrelationInequalitiesforClassicalandQuantumXYModels........... 15 CostanzaBenassi,BenjaminLees,andDanielUeltschi DissipativelyGeneratedEntanglement........................................ 33 FabioBenatti AbelianGaugePotentialsonCubicLattices.................................. 47 M.Burrello,L.Lepori,S.Paganelli,andA.Trombettoni Relative-Zeta and Casimir Energy for a Semitransparent HyperplaneSelectingTransverseModes...................................... 71 ClaudioCacciapuoti,DavideFermi,andAndreaPosilicano AnalysisofFluctuationsAroundNon-linearEffectiveDynamics .......... 99 SerenaCenatiempo LogarithmicSobolevInequalitiesforanIdealBoseGas .................... 121 FabioCipriani SphericalSchrödingerHamiltonians:SpectralAnalysis andTimeDecay .................................................................. 135 LucaFanelli OntheGroundStatefortheNLSEquationonaGeneralGraph.......... 153 DomenicoFinco Self-AdjointExtensionsofDiracOperatorwithCoulombPotential....... 169 MatteoGallone Dispersive Estimates for Schrödinger Operators with Point InteractionsinR3 ................................................................ 187 FeliceIandoliandRaffaeleScandone vii viii Contents ChernandFu–Kane–MeleInvariantsasTopologicalObstructions........ 201 DomenicoMonaco NormApproximationforMany-BodyQuantumDynamics andBogoliubovTheory.......................................................... 223 PhanThànhNamandMarcinNapiórkowski EffectiveNon-linearDynamicsofBinaryCondensates andOpenProblems.............................................................. 239 AlessandroOlgiati Remarks on the Derivation of Gross-Pitaevskii Equation withMagneticLaplacian........................................................ 257 AlessandroOlgiati OntheInverseSpectralProblemsforQuantumGraphs.................... 267 M.OlivieriandD.Finco Double-Barrier Resonances and Time Decay of the Survival Probability:AToyModel ....................................................... 283 AndreaSacchetti About the Editors Prof. Gianfausto Dell’Antonio’s research focuses on axiomatic quantum field theory,localfieldtheory,mathematicsofquantummechanics,criticalpointtheory, stochasticprocesses,singularinteractions,andmany-bodyproblems.Hegraduated intheoreticalphysicsinMilan,wasresearchassociateinCopenhagen(NielsBohr institute),Zurich(ETH),andEvanson(Northwestern),thenprofessoroftheoretical physicsinNaplesandprofessorofrationalmechanicsandmathematicalphysicsat La Sapienza Rome. He held visiting professorships at the IHES Paris, Courant Institute NY, The University of Marseille Luminy, Bielefeld University (as a recipientofavonHumboldtprize),CERN,SISSATrieste,andtheInterdisciplinary LaboratoryoftheAccademiadeiLincei.HeheldalsovisitingpositionsattheIAS Princeton,EcolePolitechniqueParis, ParisDauphine,HarvardUniversity,andthe MaxPlanckInstituteinMunich. Dr. Alessandro Michelangeli’s research is in the field at the interface between mathematical physics, functional analysis and non-linear dispersive PDE, and operator theory, with a special focus on the mathematical methods for quantum mechanical and condensed matter systems. He graduated in theoretical physics in Pisa and in mathematical physics at SISSA Trieste, held faculty positions at the LMU Munich and SISSA Trieste, and visiting positions at the University of Cambridge,SISSATrieste,andBilkent. ix Shell Interactions for Dirac Operators NaiaraArrizabalaga Abstract In this notes we gather the latest results on spectral theory for the couplingHCV,whereH D(cid:2)i˛(cid:3)rCmˇisthefreeDiracoperatorinR3,m>0 and V is a measure-valuedpotential.The potentialsunderconsiderationare given in terms of surface measures on the boundaryof boundedregular domainsin R3. We give three main results. We study the self-adjointness.We give a criterion for the existence of point spectrum, with applications to electrostatic shell potentials, V(cid:2), which dependon a parameter(cid:2) 2 R. Finally, we provean isoperimetric-type inequalityfortheadmissiblerangeof(cid:2)’sforwhichthecouplingHCV(cid:2)generates purepointspectrumin.(cid:2)m;m/.Theballistheuniqueoptimizerofthisinequality. Keywords Dirac operator (cid:129) Self-adjointextension (cid:129) Shellinteraction (cid:129) Singular integral 1 Introduction andMain Results The quantum mechanical model presented in these notes is a shell interaction for Dirac operators, which is nothing else than the free Dirac operator in R3 coupled withameasure-valuedpotential. Givenm (cid:4) 0, the freeDirac operatorin R3 is definedbyH D (cid:2)i˛ (cid:3)r Cmˇ; where˛ D.˛1;˛2;˛3/, (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) ˛j D (cid:3)0j (cid:3)0j forjD1;2;3; ˇ D I02 (cid:2)0I2 ; I2 D 1001 ; (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (1) 01 0(cid:2)i 1 0 and (cid:3)1 D 10 ; (cid:3)2 D i 0 ; (cid:3)3 D 0 (cid:2)1 N.Arrizabalaga((cid:2)) UniversityoftheBasqueCountry,UPV/EHU Apdo.644,48080Bilbao,Spain e-mail:[email protected] ©SpringerInternationalPublishingAG2017 1 A.Michelangeli,G.Dell’Antonio(eds.),AdvancesinQuantumMechanics, SpringerINdAMSeries18,DOI10.1007/978-3-319-58904-6_1