Review Advances in Microclimate Ecology Arising from Remote Sensing Florian Zellweger ,1,* Pieter De Frenne,2 Jonathan Lenoir,3 Duccio Rocchini,4,5,6 and David C oomes1,* Microclimates at the land–air interface affect the physiological functioning of Highlights organismswhich,inturn,influencesthestructure,composition,andfunction- Microclimates are often neglected in ing of ecosystems. We review how remote sensing technologies that deliver ecologyandevolution,despitemount- ingevidencethatmicroclimatesmatter detaileddataaboutthestructureandthermalcompositionofenvironmentsare for ecosystem dynamics and pro- improving the assessment of microclimate over space and time. Mapping cesses, such as the response of landscape -leve l heterogene ity of microclima te ad vances our ability to study organism s to c lima te ch ange. howorganismsrespondtoclimatevariation,whichhasimportantimplications Remotesensingapproachestomea- for understanding climate-change impacts on biodiversity and ecosystems. sure the 3D structure and thermal Inte rpolating in sit u microclimate m easurem en ts and down scal ing macrocli- sciogmni pficoasnit tiolyn o af dtevarrnecsetria l meiccor osycslimteamtes mateprovidesanorganism-centeredperspectiveforstudyingclimate–species modelingan dmapping .Thisprovides interactions and species distribution dynamics. We envisage that mapping of novel opportunities for fundamental andappliedmicroclimateecology,for- microclimate will soon become commonplace, enabling more reliable predic- estry,andagriculture. tions of spec ies a nd ec osystem responses to g lobal cha nge. Increasedeffortstouseremotesen- Importance of Microclimate Maps sing to upscale in situ microclimatic Local modifica tio n of the climat e (see Glossary) by topography and vegetation produces mea sur ements w ill further our mechanistic understanding of how microclimatesattheland–airinterfacewhichcandiffergreatlyfromtheclimaticmeans[1,2]. topography and vegetation structure Surfacetempera tu res between north-an dsou th-fa cing mounta inside s,f orexam ple,can vary determinem icroc limate. by20(cid:1)C ,equivalentto alatitudi nalgra dien tofabout20 00km[3].Inadd itio n,forestc ano pies ca nbuffe rthediurna la m plitudeof airtempe ra turein thefo rest un de rstoreyb y7(cid:1)C [4].Such Detailed spatial and temporal microcli- mate data derived from remote sen- differencesintemperaturewithinlandscapesmattertoorganisms,affectingprocessessuchas sing may lead to more realistic respirationaswellasheatandenergyexchangewhich,inturn,setthermodynamicconstraints predictions of microclimate and the on species behavior, growth, reproduction, and survival [5–7]. Innumerable papers over the associatedbioticresponsestoglobal pas tcentur yhavequ antifiedm icroclimatesa ndt heirinflu ences onecologica lproces sesa tall change. levels of organization, from physiological processes of single organisms to ecosystem-level productivityandnutrientcycling[4–6,8–10].Microclimateisalsorelevanttoevolutionbecause phenotypicandgenotypicadaptationsaredrivenbyenvironmentalconditionsactuallyexperi- enced by the organisms [11]. Moreover, microclimate mapping and monitoring have been 1ForestEcologyandConservation Group, Departm ento fPlantSciences, recognizedaskeytoeffectivenaturalresourcemanagement,withforestry,agroforestry,and UniversityofCambridge,Downing agriculture being prominentexamples[6,12]. Street,Ca mb ridgeCB23 EA,UK 2Forest andNature Lab ,Ghe nt University,Geraardsbergsesteenweg Microclimateecologyisattractingrenewedattentionowingtoitsfundamentalimportancein 267,BE9090Gontrode,Belgium understandinghoworganismsrespondtoclimatechange[2].Speciesdistributionsaretypically 3Eco logi eetD ynamique des modeled using macroclimate data obtained from national networks of weather stations SystèmesAnthropisés(EDYSAN), [13,14]. T hese standard meteor ologic al data ar e me asured in open are as at 1.5–2 m height Unité Mixt e de Recher che 7058 CentreNationaldelaRecherche aboveshortgrass,andcapturesynopticconditionsthatareunrepresentativeoftherangeof Scienti fique,Un iver sit édePicardie microclimates that most organisms experience [15,16]. These inaccuracies and biases can JulesVerne,1RuedesLouvels, 80037 Amien s CED EX1 ,France have serious implications when predicting organismal responses to climate change. For 4Unive rsityofT rento,C en ter example, recentstudiessuggestthatmany plantandanimalcommunitiesareaccumulating Agriculture Fo odEnvi ronment-C3A, TrendsinEcology&Evolution,April2019,Vol.34,No.4 https://doi.org/10.1016/j.tree.2018.12.012 327 ©2018ElsevierLtd.Allrightsreserved. a climatic debt because they are migrating more slowly than necessary to keep up with ViaEdmundMach1,38010San lmo caaclroracdlimiatai oten wreag rmiminesg, [1so7i– l2c2h]a. r Hacotwe reisvteicr,s t,eamnd petoraptou grrea pbhuyf f–ermine ga nnseathr athteo rg graonu insdm –s omwai nygn otot M5CUeicnl lhiuvelealerrs, iaCtyllo’ Aom df piTguretea n(tT tiooNn, )a,D lIetaapnlaydrt ment of need to migrate, or adapt, as quickly as previously thought to keep pace with the shifting IntegrativeBiology-CIBIO,Via Sommarive9,38123Povo,TN,Italy macroclimate [23,24] (Box 1). Thus, extinction risk from climate change for plants and insects is 6Fondazion eE dmund Mach ,Re search considerably reduced by the occurrence of microrefugia within landscapes with highly andInnovatio nCentre ,Depa rtmentof heterogeneousmicroclimates[25].Nevertheless,themodulatingeffectsofmicroclimatevari- BiodiversityandMolecularEcology, ability on climat e change impa cts h ave only rece ntly started to b e quan tifi ed [3,21,25–2 9]. MViaic hEedlmeuanll’dA dMigaec,hT 1N, ,3I8ta0l1y0 San Akeyimpedimenttoprogressinincorporatingmicroclimateintomodelsofhowclimatechange impactsonorganismshasbeenourlimitedabilitytomapandmonitormicroclimaticvariationover *Correspondence: [email protected](F.Zellweger)and largespatialscalesandovertime.Networksofmicroclimatesensorsprovidepoint-basedmeasure- ment s and weathe r st ation s pro vide mac ro climate data, but we have l acked appro aches to [email protected] (D. Coomes). effectivelyinterpolateanddownscalethisinformation.Remotesensingisnowofferingoppor- tunitiestoliftthistechnicalbarrierbyproducingdetailedandspatiallycontinuousdata-layersthatcan beusedasexplanatoryvariablestounderstandandmodelthehorizontalandverticalvariationin microclimaticconditionsoverlargespatialandtemporalscales.Wereviewherehowtheseemerging technologies are advancing microclimate modeling and mapping, and highlight some of the opportunitiestheyprovideforecology,conservation,andclimatechangeresearch. Eureka: Remote Sensing Advances for Modeling and Mapping Microclimate Remote sensing technologies are increasingly capableof mapping the structural complexity andthermalcompositionattheground–atmosphereboundaryatscalesrelevanttostudying Box1.ShiftsinSpeciesDistributionsinResponsetoGlobalWarming Microclimate–thelocalmodulationofmacroclimatebyvegetationcanopiesandtopographicposition–affectsspecies redistributionunderclimatechange(FigureI).Mapsofmicroclimatepredictedfromremotesensingdatacanimprove habitatsuitabilitymapsandpredictionsofhowspecieswillrespondtoclimatechange. Probability of occurrence Current climate Future climate (+2°C) High (A) (B) (C) (D) Low 1 km FigureI.ProbabilityofOccurrencemapsBasedonaVirtualSpeciesApproach.Therealizednicheofthe speciesisknownandpredictedwithcurrent-daymacroclimate(A),microclimate(B),andprojectedintothefutureunder a2(cid:1)Cw ar mingsc ena rio(panels Ca ndD,respec tively).Thetem pe raturedatafo rim age s(A)and( C)re fer tolong -term (3 0ye araverag esduring theper io d19 70– 2000)maxim um temperature ofthe wa rmestm on th,a nd were ob tainedby downscalingmacroclimateat25mresolutiontoincorporatetopoclimaticprocesses.Spatialvariationinmicroclimate (temperatureinthiscase)generatedbytrees(i.e.,canopycover)andtopography(i.e.,topographicconcavity)was modeledusing50cmresolutionmaps(B,D)derivedfrom3DairborneLiDAR.Notethatmicroclimaticmodelsindicate muchlargerareasofsuitablehabitatthandomacroclimaticmodels.Inparticular,manypotentialmicrorefugiaare identifi ed in (D) w hic h could continu e to pro vide suitable h abitat u nd er climate warm ing. Figur e adapted, w ith permission,fromLenoiretal.[24]. 328 TrendsinEcology&Evolution,April2019,Vol.34,No.4 organismalresponsestoenvironmentalvariation[27].Wediscussthecontributionsthatlaser Glossary scanning,photogrammetry, hyperspectralimaging,andthermal imagingare making. Airbornelightdetectionand ranging(LiDAR):aremotesensing AirborneLightDetectionandRanging(LiDAR)(alsoknownasairbornelaserscanning)is technologyusedfor3Danalysisof Earthsurfaceenvironments(also particularly valuable for modeling and mapping microclimates because it provides spatially knownaslaserscanning).ALiDAR continuous, sub-metre-scale information on two key modifiers of climate at the ground– sensor em itsab out20000 0 laser atmosphereinterface:groundtopographyandvegetationstructure[30].Toconstructmaps, pulsespersecondtowardsthe microclimate measure mentsta kenontheg roun dusingse nsornetw orks are relatedto LiDAR ground and measu resthee nergy waveformreturningfrom structuralinformation,suchastopographicpositionandlightincidenceatveryhighresolutions backscatteringobjects.Whenused (Boxes 2–4), using statistical modeling approaches, and the function generated by this tomeasureveg etations tructu re,the approachisthenusedtopredictmicroclimatesacrosstheentireLiDAR-mappedlandscape lightpulseiswiderthanatypicalleaf (Figure 1) [1 3,31– 35]. E ffe ctive in terpolation req uires th at th e sen sor networks sa mple con- by th e time i t reach es th e upper canopy,meaningthatsomeofits trastingsiteswithinthestudyarea.Thesensordatamustalsobesummarizedinecologically meaning ful w ays, g uid ed by clear rese arch q uestio ns [3 6]. F or example, the f requency of ceanneorgpyy ptoaslsoewse trhlraoyuegrsh athned uepvpenerthe extremely cold or hot temperatures, calculated over timescales relevant for the growth and ground.Thesensorconvertsthe continuo usw aveform ofretur ning survival of organisms, are more meaningful for biogeographic applications than are average energyinto ‘discreetr etu rns’and,by conditions [2,36]. preciselyrecordingreturntimesand itslocationintheair,createsa3D Aerialphotographyprovidesanalternativeapproachtoassessingtopographyandforeststructure pointcloudofthepositionofobjects. Thep ointc lou dis usedto de rive byusingphotogrammetryandstructure-from-motion(SfM)techniquestoconstruct3Dsurfaces high-resolutionoftopographyand (Figure2)[37].Theseinexpensiveandeasy-to-usemethodsareincreasinglyapplied,butareless canopyheight(seeDTMandCHM) accuratethanLiDARatderivingterrainelevationbeneathtreecanopies,orformeasuringvertical anddetailedinformationonvertical vegetationstructure,becausephotographsonlyrecordreflectanceofftheuppersurface[38,39]. vegetationstructurethatisspatially continuousacrosslargeareas.Some One-offmappingoflargeareasusingLiDARandaerialphotographyisnormallyconductedfrom LiDARsensorsrecordthefull mannedaircraft,whileunmannedaerialvehicles(UAVs,e.g.,drones)equippedwithminiaturized wavefo rm,prov idingd etail ed cameras and LiDAR sensors are becoming available to map smaller areas at even higher informationabouttheentirevertical spatiotem pora lresolu tion.Usin gUA VsandSfM techniqu es ,Millin getal.[ 40]fou nd thats ummer forestprofil e.The add edva lueoffull- maximumtemp eraturesm ayvar ybyup to4 (cid:1)Co veronlyafe wmet ers w ithin sageb rush –steppe waveform over discrete LiDAR for microclimatemappingremainstobe landscapes – habitats that were previously considered to be relatively homogeneous. A key tested. advantageofUAVsisthatdeploymentisveryflexible,enablingthecollectionoftime-seriesofaerial Alphadiversity:speciesdiversityin imageryov er aperio d ofin terestatrelat iv elylo wcost. SfMtech niqu esapplied t oimagetime -s eries sites o r habitats a t the loc al scale (e. g.,point-basedsurveys),often offernovelopportunitiesformonitoringmicroclimatesinecosystemsinwhichphenologycreates stron gtem poralvariation in microclima te[41,42]. espxperceiessse(sdp aesc iethser itcohtanle nsus)mobrer of abundanceweightedindicessuchas Terrestriallaserscanning(TLS)providesimmenselydetaileddatasetsofvegetationstruc- the Shannon index and the Simpson index. turethatcanbeusedtomodelmicroclimate.Complementarytoairbornelaserscanning,which Betadiversity:adiversitymeasure expressingvariation(turnoverand nestedness)incommunity compositionamonghabitat Box2.MeasuringHowPlantCanopiesAffectSolarRadiationFluxes gradients;canbecalculatedbased Solar ra diationfluxh asstro ngeffe ctsonthe energy budget andperfor manceoforganismslivingbeneathvegetation ontaxono mic (e.g .,species canop ies.Rad iation reg imesa longthe ve rtica lcanop yprofile offo restscanbe es timatedfro maL iDARpoin tcloudby ide ntities),fun ctiona l(e.g.,functional creatinga3Dmapoffoliagepresence/absenceinvoxels(i.e.,3Dpixels)andthenapplyray-tracingalgorithmsto traits),andphylogenetic(e.g., evaluatewhetherbeamsenteringthecanopyatdifferentlocationsandanglesarelikelytobeintercepted[31,87]. branches)units. Alternativ ely,LiDA Rdata canbeus edt ogenera te synthetic hemisphe rica limages fro mwhi ch flux esofnon-di rectional Canopyh eightmodel(CHM):a diffuseskyra diation andd irec tso larra dia tion,orlig htextinct ionfollowingth eBeer– Lam bertlaw [88], ca nbecalculated continuo usdigita lsurfac e–usua llyin forany tim einthed ayo ryea r(Figu reI).The se app roachesa recompu tati onallyintensive bu tbet terr epr esentlight theformof arast erdatas et –that conditionsexperiencedbyforestorganismsthandosimpleapproachesbasedoncanopycover[89].Vegetation representstheheightofthecanopy structurethusdrivestheinterceptionofsolarradiation,whichmeansthattheimportanceofvegetationstructurefor abovetheunderlyingterrain. microclimatewillvarybetweendayandnightandindifferentweatherconditions,withthetemperatureoffsetsbeing Climate:synthesisofatmospheric highestonbrightsunnydays.Advancesinphysicallybasedradiativetransfermodelingnowmakeitpossibletoestimate conditionscharacteristicofa the3Dradiativebudgetinforestsandopenlandsatanever-increasingdetail,forexamplebyaccountingforfoliage- particularplaceinthelong-term spe cific filtering ofdiffer en twavele ngth s[90 ]. (usually3 0year av erag es)expressed TrendsinEcology&Evolution,April2019,Vol.34,No.4 329 byaveragesofvariouselementsof weatherandprobabilitydistributions Radia(cid:2)on Radia(cid:2)on ofextrem ee vents. without vegeta(cid:2)on shading Vegeta(cid:2)on height with vegeta(cid:2)on shading Climatedebt:bioticresponses (A) (B) (C) observed in nature are often slower thanexpectedundertheassumption High High High ofco mpletesy nchron yw ithclimate change;climatedebtdescribesthe spatiotemporallagaccumulatedbya speciesoracommunitycompared totheactualshiftinclimate. Coldairdrainage:gravity-induced, Low Low Low down slop eflowofr elativelycoldair neartheground,poolinginlocal 500 m N depr essi onsand valleyco n strictions. Aprominentphenomenonin mountainvalleysatnightandduring (D) Eleva(cid:2)on (E) 225 m winter. Digitalterrainmodel(DTM):a continuousdigitalsurface representingtheelevationheightof thebareearth.Sometimesalso High referredtoasadigitalelevation model(DEM). S Hyperspectralremotesensing: 11 m imageanalysisb asedon thespectral reflecta nceacr ossaw ide ran geof W E theelectromagneticspectrum;also Low knownashyperspectralimagingor imagingspectroscopy. Macroclimate:climateconditions abovegroundorabovethecanopy N (e.g.,> 2m)at a relative lyla rge scale,forexampleacrossspatial dimensionsof1kmormore,and withtemporaldimensionsofdaysto FigureI.UsingAirborneLiDARToMapSolarRadiationFluxesinaMountainousRegion.(A)Potentialclear- wee ksorlong er. skysola r radiatio npredicte dtoreac ht hegro undon asummer dayifve ge ta tionisabsent(i. e.,based on adigitalt errain Microc lim ate:climateconditions mod elge nerated byLiDAR) .(B )Fore stc anopy hei gh tmeasu red o verthesam e region .(C) Potent ial cl ear-sk ysolar closetothegro und(e. g.,<2m)or radiatio ncalculate dto reacht heg round havingp enetrat edthrough thefo res tcanop y,assu min gincrease dshading with along ve rtica lforest profile sa t increasin gvegetatio nc overa nd height.I tcanb eseenthatm uchof the landsc apeisde eplyshad edbytrees andshr ubs, relativ elyfine spatiot empora l makingit suitablefor shad e-to lerantp la nts pec ies. (D)3 Dairb or ne LiDAR-der ive deleva tionda ta ofaf ores t(black resolution s,f orexampleacross rectang le inB)are use dtoconstructs ynthe tichemisp he rical imagesa t1mand25m heightab oveth ef or estfloo r[85]. spatialdime nsi onsofce ntimetersto (E)Recon st ruc ted hemi sp hericalima ges,take nattheredp ointpos itio n in (B), sho w portio nsofth es kyobs cure dby meters ,withtempo ra ldimensions of tre es(black)andth eterrain(blue) ,fromwh ichdif fus ean dd irectli ghttrans mi ssio ncan becalcul ate d.T hes eimagesc an minutes ors horter.Mi croclimate beca lculated for any pointin thela ndsc apean datan yhei ghtinf ores tcanopies,pr ovid ing unprecede ntedo pportun ities conditio ns includet emperature, to estimateth em icro clima te int heneighbo rhoo d ofin dividua l organi sms.Note thattheg roundtopograp hy(elevation, precipitatio n,humi dity,wind,and as pect,and slo pe)hasastro ng infl uenceonsolar rad iation[86 ],andhigh-r esolu tion DTM sfrom LiDARsurve ysprovide radiationregi mes. cruciali nput data forq u antifyin gthesee ffec ts[1 3,14]. Microre fugia:spatiallyrestricted localhabitatsthatsustainaclimate thathasbecome,orisbecoming, lostowingtoclimatechangeand maps3Dvegetationstructurefromabove,TLSmapsvegetationinextraordinarydetailfrom thatenablespeciestopersistinan below,thusprovidinginformationontheunderstoreystructure.Kongetal.[43]foundthatTLS- othe rwisein hospitab le region. basedreconstructionsofcanopyvolumescoupledwithmicroclimatemeasurementsrevealed Remotesensing:acquiring cooling effectsintheun de rstorey thatvarie damong tree species,sugg estingthatTLS canpick informatio nabouta nobjector phenomenonfromadistance. upsubtleeffectsofdifferentleafsizesonunderstoreymicroclimate.Moreover,Ehbrechtetal. Temperaturebuffering:belowa [44] found that TLS-derived measurements of canopy openness were positively related to plant,especial lyforestcan opies, diurnaltemperaturerangesinmanagedtemperateforestsinGermany.TLSmeasurementsare dailyairtemperaturesmaybe restrict edtoafewh ectares a ndareof limiteduse ,comp ar edtoairbo rne laserscanning, for subs tan tially buffered, incre asing less duringthedayanddecreasingless modeling microclimate over large areas. Nevertheless, the forest understorey-structure 330 TrendsinEcology&Evolution,April2019,Vol.34,No.4 information that TLS provides at the plot level has been shown to improve landscape-level duringthenightthanoutsidethe vertical vegetationstructuremappingbasedon full-waveform airborneLiDAR[45]. forestcanopies. Terrestriallaserscanning(TLS): theprocessofgathering3Ddata Complementing maps of 3D vegetation structure, maps of leaf functional traits and species usingaLiDARinstrumentonthe obtainedbyhyp erspe ctr alr emotesen sing[46,4 7]are lik elyt oimprove thest atist icalfitof groun d. 3Dpo intcloudsp rod uced microclimatemodels.Weexpectthisimprovementbecausethequalityandquantityofsolar byTLSaretypicallymuchdenser thanthoseobtainedbyairborne radiation transmitted by canopies vary according to leaf traits and tree species, leading to LiDAR. species-specificmicroclimaticconditionsintheunderstorey[48].However,weareunawareof Thermalimaging:techniqueto studiesusinghyperspectralremotesensingtomapmicroclimate(seeOutstandingQuestions). produceanimagebasedontheheat emittedb ya nobje ctora no rgan ism. Understorey:alayerofvegetation Tathuerrems.alA imsaogpipnogs uesdintgo tLhieDrAmRal tiencfrhanreodlo (gTiIeRs), cTaIRmecraams ecraans bdeir aepctplylierde ctoo rmdalopn sgu-wrfaacvee tienmfrapreerd- cclaonsoep tyo otfhea flfoo roer s tb.ene at h the main radiatio n ( i.e., 7.5–1 4m m) em itted by an o bjec t or orga nism, w hich is linked to surface Vaporp re s suredeficit(VPD):the temperat ure a ccording to Boltzman n’s law when su rfaces have high e m issivity [3, 49]. The differen ce betwee n satur ation va por pressureandtheactualvapor surfaceandbodytemperatureofanorganismisrelatedtoitsenergybudgetandthustothe function inga ndpe rformanceo fp lant sandanim a ls[7,50 ].N on etheles s,thesu rfac etem pe ra- pressure at a given temperature. tureisnotnecessarilyrelatedtotheairtemperatureanorganismexperiences.Forinstance, plantsrespondtowatershortagebyclosingstomataandreducingtranspiration,whichcauses leafsurfacetemperaturestorise;irrigatedandnon-irrigatedplantscandifferinleaftemperature by several degrees but have similar air temperature in their surrounds, as measured with shielded temperature sensors (Figure 2). TIR images recorded by UAVs have centimeter resolution[49],providingvaluablemeansforfine-scalemonitoringandmanagementofwater use and water stress by plants, for example in crop production [51,52], or to assess the temperature experienced by insects living on leaf surfaces. However, TIR images might not necessarily reflect atmospheric or soil microclimatic temperatures experienced by plants, in other wordstheir thermalniche. Box3.TemperatureBufferingandOffset Solarradiationreachingtheland–atmosphereinterfaceismostlyreflected,orabsorbedandre-emittedasthermal radiation,ordrivesevapotranspiration.Vegetationcanopiesliftenergy-exchangesurfacesofftheground,andindoing somodul ate radian tfluxes,airtempera ture,andh umiditya tgr oundlevel.Theca pacityof pla ntc anopies tos us taina differenttemperaturebelowthecanopycomparedtofree-airconditions(i.e.,atemperatureoffset)isthuscloselyrelated tocanopystructureandcomposition.Underthecanopy,diurnalchangesintemperaturesarelessextremethanabove thecanopy,andthistemperaturebufferingismodulatedbycanopyheightandcover,bothofwhichcannowbe preciselymapped[13,32,91]. Sensornetworkssamplingenvironmentalgradients(cf.Figure1inmaintext)areincreasinglycombinedwithremote sensing datatom apmicro climate.Thecu rrentscien tific literatu re o ftenm akes cru deassumpt ionsabout thes hading andtemperature-bufferingeffectofvegetationwhenmodelingmicroclimate,andusuallyneglectssystematicchanges inthetemperatureoffsetovertime,inotherwordstheoffsettrend(FigureI)[24,28].Thedegreetowhichtemperatures belowthecanopyareoffsetcomparedtofree-airconditionswillnotbeconstantovertimeanddependsonsuccessional processesdrivingdynamicsincanopystructureandcomposition.Longtime-seriesofbelow-canopytemperature recordsthusneedtoberelatedtoforestdynamicstobetterunderstandthedriversoflong-termmicroclimaticdynamics [24].Suchdataarerarelyavailable[92],andgloballong-termnetworkssuchasFLUXNETmayproveveryvaluableinthis respect. Forestmicroclimatesarealsoaffectedbylandscapefeaturessuchasdistancestoforestedges,urbanareas,andlarge waterbodies.Manyoftheselandscapefeaturescanberetrievedfromremotesensingdata[4,29,32,35,93]and integr atedinto predi ctiv emod elsusedto mapm icroc lima te.Anoth erke yinfluen ceonsp atiote mporaldynamic sin microclima teis topograph icposit ionbe ca useit determinesth einfluen ces ofcoldair dr ainageandpoo lingonas ite [94,95].Topographicpositionandcoldairdrainagecanbeestimatedfromhigh-resolutiondigitalterrainmodels(DTMs), furtherincreasingourabilitytomapandmodelmicroclimateacrossbroadspatialandtemporalscales. TrendsinEcology&Evolution,April2019,Vol.34,No.4 331 Weather sta(cid:415)on (A) ))1144 CC °° (( e e rr uu1122 tt aa rr ee pp mm1100 ee TT 11995500 22001177 MMiiccrroocclliimmaattee sseennssoorr nneettwwoorrkk (B) )) CC °°2200 (( e e rr uu tt rara1100 11111111111111111111111111111111111111111111111111111111111111114444444444444444444444444444444444444444444444444 111111111111111111111111111111111111111111111111111111111114444444444444444444444444444444444444444444444444444444444 pepe mm ee TT 00 1111111111111111111111111111222222222222222222222222222 11111111111111111111111111111111111111111111111111111122222222222222222222222222222222222222222222222222222 JJuull DDeecc iimmaaggee ccrreeddiitt:: MMaa(cid:425)(cid:425)hhiieeuu DDéérraamméé )) CC °° MMaaccrroocclliimmaattee OOffffsseett (C) e (e ( MMiiccrroocclliimmaattee OOffffsseett ttrreennd rr uu tt aa rr ee pp 2277 mm ee tt m m 2255 uu mm xixi 2233 aa MM 22001122 22001144 22001166 YYeeaarr FigureI.MicroclimateDynamicsmayDeviatefromtheMacroclimate.(A)Weatherstationsasillustratedonthe leftprovidelong-termclimatedataforsynopticconditions(rightpanel).(B)Microclimatedatafromsensornetworks(cf Figure1inmaintext)arecurrentlyavailablemostlyforshorttime-periodsonly,forexamplemonthstoafewyears(right panel).Theleftimageshowsashieldedsensorplacedonthenorthsideofatreetrunk.(C)Maximumairtemperatures below canopies (i.e., microclimate) are frequently offset by several degrees compared to free-air conditions (i.e., macroclimate),andtheoffsettrendovertimemayvary.Long-termdataseriesarenecessarytoassessthedifferencesin spatiotemporaldynamicsbetweenmacro-andmicroclimate(seetext). Surfacetemperaturesfromhigh-resolutionTIRimageshavebeenappliedforfireanddisease detection, phenotyping in plant breeding, wildlife monitoring, and microclimate ecology (reviewedin[42,52]).Senioretal.[53],forexample,usedTIRimagestoshowthatselective logging of tropical forests had very little impact on thermal buffering compared to primary 332 TrendsinEcology&Evolution,April2019,Vol.34,No.4 Box4.WaterandWind Plantcanopiesnotonlybuffertemperature,butalsoprecipitation,relativehumidity,andvaporpressuredeficit(VPD) –whi chisexpo nen tially relate dtoairtempe ratu re.V PDdrivestra nspirati oninplan ts,a ndgro wthandsu rvivalc anbe impededwhenVPDishigh(responsesvarygreatlyamongspeciesanddependonwatersupplyandleaftemperature). Inadegradedtropicalforestlandscape,modelsofunderstoreyVPDgeneratedbyinterpolatingsensor-networkdata withLiDARimagery(seeFigure1inmaintext)suggestthattropicaltreeregenerationwillbeseverelyaffectedbyglobal warmingbecauseofthecloselinkbetweentemperatureandVPD[13].Theeffectofremotelysensedcanopystructure andcompositiononbelow-canopyVPDandmoistureavailabilitywarrantsfurtherresearch,forexampletobetter und erstandhow moi stureinfluences aira ndto psoiltem peratures, andvice versa[3 1,96]. Topographicfeatures,suchasslopeangle,affectthelateralsurfaceandsubsurfacewaterflow.AirborneLiDAR-derived mapsoftopo graphicw etne ss andru ggedn essa reth ussui tableto anal yzethefine -scale varia tionofso ilmoistureand airhumidity[97,98].Detailedecosystemstructuredataalsodeliverinputparameterstobetteraccountfortheeffectsof windonmicroclimate.Canopysurfaceroughnessandverticalcanopystructure,forinstance,improvewindmodelingin heterogeneousforestsandofferpromisingopportunitiestomakemoreaccuratepredictionsofthenear-surfacewind fields[99,100]. forests, suggesting that selectively logged tropical forests may play an important role in retaining species with temperature niches that are disappearing under climate change. In aquatic systems, TIR images provide a means for landscape-level mapping of cold water patches(thermalrefuges)alongrivers–animportanthabitatelementforriverinesalmonidsin timesofclimatewarming[54].Suchmapsprovidevaluableinformationtoguideconservation efforts. We currently know little about the extent to which canopy surface temperatures measured by TIR images are coupled to the temperatures prevailing in the layers beneath the canopy surface, for example in forest understoreys or at the soil surface, although this knowledge would be helpful for using TIR images to model and map microclimatic air temperature.Thedifferencebetweencanopyleaftemperaturesandambientairtemperatures canbehighlyvariableanddependsoncanopystructureandspecies-specificleaftraits,such asaerodynamicleafboundary-layerresistanceandassociatedlevelsofatmosphericcoupling [55].Suchanalysiswillalsobesubjecttoeffectsderivingfromtheabilityofplantstoregulateleaf temperature [50]. Research into the relationshipbetween below-canopy temperatures mea- suredbysensornetworks(Box3)andcanopytemperaturemeasuredbyTIRimageswillbe necessary tofurtherunderstandingof theselinkages. TIRradiationfluxisaffectedbyseveralfactorsinadditiontoleaftemperature,includingthe relativehumidity,ambienttemperature,wavelength-dependencyoftheemissivityandrange ofthecamera,windspeed,andshadows[56].Accuratesurfacetemperatureassessments usingTIRimagerycanthusbechallenging.Akeypointistheemissivity,whichistheabilityof the surface of an object to emit thermal radiation [49,57]. The mean emissivity of surfaces fromplants,soil,androcksareintherange0.903–0.997,andderivingsurfacetemperature datafromTIRimagesisthuscomplicatedbythefactthatnotallsurfacesintheimagehave similar thermal emissivity [57]. Furthermore, the spatiotemporal resolution of TIR imagery needs to be considered. Representing the climate conditions at a site requires TIR images takenacrossthefullrangeofweatherconditions,atdayandnight,andacrossseasons[2]. Although this may be feasible for terrestrial and potentially airborne TIR imagery, the high spatiotemporal resolution of such datasets comes at the cost of limited spatial coverage. SatelliteTIRimageryprovidessurfacetemperaturedatawithglobalcoverage,althoughattoo coarsearesolutiontodirectlyquantifymicroclimate(Figure2).Evenso,satelliteTIRimages canimproveinterpolationsoftemperaturedatafromweatherstationsinareaswithlowstation density [58]. Despite these challenges and limitations, the potential of TIR imagery in fundamental and applied microclimate ecology is substantial and should be explored in more detail. TrendsinEcology&Evolution,April2019,Vol.34,No.4 333 Interpola(cid:2)on of microclimate using high-resolu(cid:2)on remote sensing data (A) Network of microclimate sensors within a laser-scanned woodland S2 S1 50 m C) S1 Vegeta(cid:2)on structure Topography Temperature (° 2100 ST2max 80opy height (m) 860a(cid:2)on (m a.s.l.) 0 0 Can 160Elev Tmin Jul Dec 6 km Relate summary sta(cid:2)s(cid:2)c for each sensor (e.g., daily maximum and minimum temperatures) to structural informa(cid:2)on from remote sensing (B) Calibrate and validate sta(cid:2)s(cid:2)cal models and use them to predict microclimate across the landscape Maximum temperature Maximum vapour pressure deficit °C hPa 36 20 24 0 Figure 1. Conceptual Overview of the Approach UsedTo Generate Microclimate Mapsfrom a Sensor Network.(A)Microclimatedataarerecordedusinganetworkofsensorsmeasuringair/soiltemperatureandhumidity conditions,forexampleplacedintheopen(S1)andbelowtreecanopies(S2),asshownby3Dairbornelightdetectionand ranging(LiDAR)datainthetoppanel.Themicroclimatedatafromeachsensor(S1,S2,andblackdots)arethensummarizedin ecologicallymeaningfulways,forexampletodailyminimum(Tmin)andmaximum(Tmax)temperatures,asshowninthemiddle (Seefigurelegendonthebottomofthenextpage.) 334 TrendsinEcology&Evolution,April2019,Vol.34,No.4 Anotherapproachtomicroclimatemappingistodownscalemacroclimatedataobtainedfrom macroclimaticgrids[2,24],suchasWorldClim2[58]andCHELSA[59],whicharepublishedat relatively coars e sc ales (ty picall y 3 000 resoluti on , eq uiva lent to 1 km2 at the equ ator). Hig h- resolutionremotesensingproducts,suchasdigitalterrainmodels(DTMs),canopyheight models(CHMs),anddetailedgroundandcanopyalbedomeasurements,areusedtogenerate indicesofmicroclimaticprocessesrelatedtosolarradiation,coldairdrainage,ortopographic wetness from the grid data, and these indices are then related statistically to macroclimatic variables using regression [60–62]. Software such as R-packages implementing these approachesusingfreelyavailableinputdataarenowbecomingavailable[14].Becausethese modelsarebasedonmacroclimatedatathatareavailableatahightemporalresolution,such models allow predictions of how microclimate conditions vary in time, thus tackling a key limitationoftemporallylimitedapproachesbasedonmicroclimatemeasurementsfromsensor networks (cf Box3). Mechanisticmodelsmayalsousepredictorvariablesderivedfromremotesensingdata,butare fundamentallydifferentinthattheymodelheatandmassexchangebetweenorganismsand their environments, relying on functional relationships derived from the physical processes involved increating microclimate[63,64]. Perhapsthe mostadvanced mechanisticmodel is NicheMapperTM[63],whichdownscalesairtemperaturesbasedonasetofabioticvariables suchassoilcharacteristicsandmacroclimaticmeteorologicalvariablesincludingcloudcover, air temperatures, wind speeds, and shading. The model has been parameterized to predict lizard distributions in open habitats in Australia and the USA but does not currently include detailedmodulating influencesofplant canopiesamongitsinput variables[28,63]. Implications and Avenues for Microclimate Ecology Ecologists are starting to appreciate the ways in which microclimate mapping technologies couldimprovetheirscience.Correlativespeciesdistributionmodeling(SDM)isoftencriticized for its reliance on coarse climate information [24] and its failure to incorporate physiological knowledge[8].Usingdetailedspatiotemporalmicroclimatedatainsuchmodelswillallowmore organism-centered approaches to determine species range boundaries and their climate change-relateddynamics.Thisespeciallyappliesatthetemperature-drivenleadingandtrailing edges,wheretheresponseoforganismsmaybeparticularlysusceptibletotheavailabilityof suitablemicroclimateandassociatedmicrorefugia[8,24,26,65,66].Incorporatingmicroclimate layers into SDMs thus holds large potential, but is still in its infancy. Using simulations, and focusingonmaximumtemperatureofthewarmestmonth,Lenoiretal.[24]foundthatusing airborne LiDAR-derived variables to model microclimate decreases the extirpation risk of a virtual plant species under climate change compared to predictions based on downscaled climate data at coarser resolutions (Box 1). Such modeling results are physiologically more meaningfulbecausetheyderivefromcomparisonofthetemperaturenicheofaspecieswith realistic temperature dynamicsdrivenby vegetationshading andcold airdrainage. Microclimate data will also help to shed new light into microclimatic effects on phenology – potentiallyquantifiedbyremotelysensedvegetationindicessuchasthenormalizeddifference leftpanel,andrelatedtovegetationstructureandthetopographymappedusingremotesensingtechnologies(e.g.,LiDAR),as shownforcanopyheightandelevationacrossalandscapeinthetropicallowlands[13].Abbreviation:ma.s.l,metersabovesea level.(B)Statisticalmodelsarethenusedtopredictmicroclimateacrosstheentiremappedlandscapeandovertime.Inthis example,maximumcanopyheightandtopographicpositionwerestrongpredictorsofmaximumdailyairtemperaturesinthe understor ey(left),w hichexp lained sma ll-scalevaria tionofm aximu mvap orpressur ed eficit(VPD )(righ t), asindicatedb y the blackarrows.Imageadapted,withpermission,fromJuckeretal.[13]. TrendsinEcology&Evolution,April2019,Vol.34,No.4 335 Satellite-based land surface temperature (LST) (A) (B) °C 40 10 1000 km 100 km UAV-based remote sensing RGB image Vegeta(cid:2)on height Surface temperature (C) (D) (E) m °C 11 33 0 26 42 m Figure2.ThermalInfrared(TIR)ImagingRevealsSpatiallyDetailedInformationaboutSurfaceTempera- tures.Images(A)and(B)showlandsurfacetemperatures(LSTs)forEurope(EuroLST)derivedfromfreelyavailableMODIS satellite image sw ith ap ixelsi zeo f250m [84].Datafo rimag es (C–E)w ererecord edats ub-m eter resolution byan unmann edaeria lveh icl e(UA V)flo wn at7 0m heig htab ove ground during ane xceptiona ldr oughtinJu ne2017in at ree diversityexperimentinBelgium(www.treedivbelgium.ugent.be).Panel(C)isconventionalred/green/blue(RGB)photo- graphy,panel(D)showsthevegetationheight(m)determinedbystructure-from-motionanalysisofoverlappingphotos, andpanel(E)showsthesurfacetemperaturederivedfromtheTIRimage.Weseethatsurfacetemperaturesofplantson thegroundareconsiderablyhigherthanthoseoftreesurfacesowingtodifferenttranspirationratesasaresponsetowater shortage.ThedatawereprocessedfollowingMaesetal.[42]. vegetation index (NDVI) – and how these effects affect species distributions and species interactions.Forinstance,plantspecies-rangelimitsmaybedrivenbytemperatureextremes duringkeystagesofphenology,suchasextremecoldduringbud-breakofbroad-leavedtree species[67].Suchextremeeventsarenotrepresentedincurrentlyavailableclimatedatawith coarsespatiotemporalresolution.Usingremotesensingdatatoderiveclimatedataatreso- lutionssimilartothoseatwhichorganismsperceiveandrespondtoclimateconditionsisthusa timelytask andwillpavethewayfor morereliablepredictionsofspecies-range dynamicsin response toclimatechange [27]. Microclimate mapping could also refine our understanding of species diversity patterns. Followingtheenvironmentalheterogeneityhypothesis,microclimateheterogeneityisexpected to be positively related to species richness (alpha diversity) [68], but this remains under- studied.Similarly,investigatinghowspatialand/ortemporalchangesinmicroclimatecontribute tobetadiversitythroughenvironmentalfilteringdeservesmoreattention[68,69].Forexample, 336 TrendsinEcology&Evolution,April2019,Vol.34,No.4