ebook img

Advances in mathematical economics. Vol.18 PDF

148 Pages·2014·1.338 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in mathematical economics. Vol.18

Shigeo Kusuoka Toru Maruyama Editors 18 Volume ManagingEditors ShigeoKusuoka ToruMaruyama TheUniversityofTokyo KeioUniversity Tokyo,JAPAN Tokyo,JAPAN Editors RobertAnderson Jean-MichelGrandmont KunioKawamata UniversityofCalifornia, CREST-CNRS KeioUniversity Berkeley Malakoff,FRANCE Tokyo,JAPAN Berkeley,U.S.A. HiroshiMatano NorimichiHirano CharlesCastaing TheUniversityofTokyo YokohamaNational Universite´MontpellierII Tokyo,JAPAN University Montpellier,FRANCE Yokohama,JAPAN KazuoNishimura FrancisH.Clarke KyotoUniversity Universite´deLyonI TatsuroIchiishi Kyoto,JAPAN Villeurbanne,FRANCE TheOhioStateUniversity EgbertDierker Ohio,U.S.A. MarcelK.Richter UniversityofVienna UniversityofMinnesota Vienna,AUSTRIA AlexanderD.Ioffe Minneapolis,U.S.A. IsraelInstituteof DarrellDuffie Technology YoichiroTakahashi StanfordUniversity Haifa,ISRAEL TheUniversityofTokyo Stanford,U.S.A. Tokyo,JAPAN LawrenceC.Evans SeiichiIwamoto AkiraYamazaki UniversityofCalifornia, KyushuUniversity HitotsubashiUniversity Berkeley Fukuoka,JAPAN Tokyo,JAPAN Berkeley,U.S.A. KazuyaKamiya MakotoYano TakaoFujimoto TheUniversityofTokyo KyotoUniversity FukuokaUniversity Tokyo,JAPAN Kyoto,JAPAN Fukuoka,JAPAN Aims and Scope. The project is to publish Advances in Mathematical EconomicsonceayearundertheauspicesoftheResearchCenterforMath- ematical Economics. It is designed to bring together those mathematicians whoareseriouslyinterestedinobtainingnewchallengingstimulifromeco- nomictheoriesandthoseeconomistswhoareseekingeffectivemathematical toolsfortheirresearch. The scope of Advances in Mathematical Economics includes, but is not limitedto,thefollowingfields: – Economictheoriesinvariousfieldsbasedonrigorousmathematicalrea- soning. – Mathematical methods (e.g., analysis, algebra, geometry, probability) motivatedbyeconomictheories. – Mathematicalresultsofpotentialrelevancetoeconomictheory. – Historicalstudyofmathematicaleconomics. Authorsareaskedtodeveloptheiroriginalresultsasfullyaspossibleand alsotogiveaclear-cutexpositoryoverviewoftheproblemunderdiscussion. Consequently,wewillalsoinvitearticleswhichmightbeconsideredtoolong forpublicationinjournals. Shigeo Kusuoka • Toru Maruyama Editors Advances in Mathematical Economics Volume 18 123 Editors ShigeoKusuoka Professor GraduateSchoolofMathematicalSciences TheUniversityofTokyo 3-8-1Komaba,Meguro-ku Tokyo153-8914,Japan ToruMaruyama Professor DepartmentofEconomics KeioUniversity 2-15-45Mita,Minato-ku Tokyo108-8345,Japan ISSN1866-2226 1866-2234(electronic) ISBN978-4-431-54833-1 978-4-431-54834-8(eBook) DOI10.1007/978-4-431-54834-8 SpringerTokyoHeidelbergNewYorkDordrechtLondon (cid:2)c SpringerJapan2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewhole orpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway, andtransmissionorinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdeveloped.Exemptedfromthis legalreservationarebriefexcerptsinconnectionwithreviewsorscholarlyanalysisormaterial suppliedspecificallyforthepurposeofbeingenteredandexecutedonacomputersystem,for exclusiveusebythepurchaserofthework.Duplicationofthispublicationorpartsthereofis permitted only under the provisions of the Copyright Law of the Publisher’s location, in its currentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permissionsfor usemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliable toprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthis publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesare exemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsi- bilityforanyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,express orimplied,withrespecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Table of Contents ResearchArticles CharlesCastaing,ChristianeGodet-Thobie,LeXuanTruong,and BiancaSatco OptimalControlProblemsGovernedbyaSecondOrder OrdinaryDifferentialEquationwithm-PointBoundary Condition 1 ShigeoKusuokaandYusukeMorimoto StochasticMeshMethodsforHo¨rmanderTypeDiffusion Processes 61 SurveyArticle AlexanderJ.Zaslavski TurnpikePropertiesforNonconcaveProblems 101 Note YuhkiHosoya A Characterization of Quasi-concave Function in View oftheIntegrabilityTheory 135 SubjectIndex 141 InstructionsforAuthors 143 v Adv.Math.Econ.18,1–59(2014) Optimal Control Problems Governed by a Second Order Ordinary Differential Equation with m-Point Boundary Condition CharlesCastaing1,ChristianeGodet-Thobie2,LeXuanTruong3, andBiancaSatco4 1 De´partementdeMathe´matiquesdeBrest,Case051,Universite´MontpellierII, PlaceE.Bataillon,34095Montpelliercedex,France (e-mail:[email protected]) 2 LaboratoiredeMathe´matiquesdeBrest,CNRS-UMR6205,Universite´de BretagneOccidentale,6,avenueLeGorgeu,CS93837,29238 BrestCedex3,France (e-mail:[email protected]) 3 DepartmentofMathematicsandStatistics, UniversityofEconomicsofHoChiMinhCity, 59CNguyenDinhChieuStr.Dist.3,HoChiMinhCity,Vietnam (e-mail:[email protected]) 4 StefancelMareUniversityofSuceava,Suceava,Romania (e-mail:[email protected]) Received:August22,2013 Revised:November20,2013 JELclassification:C61,C73 MathematicsSubjectClassification(2010):34A60,34B15,47H10,45N05 Abstract. Using a new Green type function we present a study of optimal control problemwherethedynamicisgovernedbyasecondorderordinarydifferentialequa- tion(SODE)withm-pointboundarycondition. Keywords: Differentialgame,Greenfunction,m-Pointboundary,Optimalcontrol, Pettis,Strategy,Sweepingprocess,Viscosity S.KusuokaandT.Maruyama(eds.),AdvancesinMathematicalEconomics 1 Volume18,DOI:10.1007/978-4-431-54834-8 1, (cid:2)c SpringerJapan2014 2 C.Castaingetal. 1. Introduction Thepioneeringworksconcerningcontrolsystemsgovernedbysecondorder ordinarydifferentialequations(SODE)withthreepointboundarycondition aredeveloped in[2,16].Inthispaper wepresentsomenewapplications of the Green function introduced in [11] to the study of viscosity problem in OptimalControlTheorywherethedynamicisgovernedby(SODE)withm- point boundary condition. The paper is organized as follows. In Sect.2 we recall and summarize the properties of a new Green function (Lemma 2.1) withapplicationtoasecondorderdifferentialequationwithm-pointbound- aryconditioninaseparableBanachspaceEoftheform ⎧ ⎪⎪⎨u¨τ,x,f(t)+γu˙τ,x,f(t)=f(t), t ∈[τ,1] m(cid:6)−2 (SODE) ⎪⎪⎩uτ,x,f(τ)=x,uτ,x,f(1)= αiuτ,x,f(ηi). i=1 Here γ is positive, f ∈ L1([0,1]), m is an integer number > 3, 0 ≤ τ < E η1 < η2 < ··· < ηm−2 < 1, αi ∈ R (i =1,2,...,m−2) satisfying the condition m(cid:6)−2 m(cid:6)−2 α −1+exp(−γ(1−τ))− α exp(−γ(η −τ))(cid:5)=0 (1.1.1) i i i i=1 i=1 andu isthetrajectoryW2,1([τ,1])-solutionto(SODE)associatedwith τ,x,f E f ∈L1([0,1])startingatthepointx ∈Eattimeτ ∈[0,1[.ByLemma2.1, E u andu˙ arerepresented,respectively,by τ,x,f τ,x,f ⎧ (cid:7) ⎪⎪⎨u (t)=e (t)+ 1G (t,s)f(s)ds, ∀t ∈[τ,1] τ,x,f τ,x τ (cid:7)0 ⎪⎪⎩u˙ (t)=e˙ (t)+ 1 ∂Gτ(t,s)f(s)ds, ∀t ∈[τ,1] τ,x,f τ,x ∂t 0 whereG istheGreenfunctiondefinedinLemma2.1with τ ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨eτ,x(t)=x+A(cid:8)τ(1−m(cid:6)−m(cid:6)i=2−12α(cid:9)i)(1−exp(−γ(t −τ)))x, ∀t ∈[τ,1] e˙ (t)=γA 1− α exp(−γ(t −τ))x, ∀t ∈[τ,1] ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩Aττ,x=(cid:8)m(cid:6)−2ατi −1+ie=x1p(−i γ(1−τ))−m(cid:6)−2αiexp(−γ(ηi −τ))(cid:9)−1. i=1 i=1 OptimalControlProblemsGovernedbyaSecondOrderOrdinary... 3 Westressthatbothexistenceanduniquenessandtheintegralrepresentation formulas of solution and itsderivative for (SODE) viathe new Green func- tion are of importance of this work. Indeed this allows to treat several new applications to optimal control problems and also some viscosity solutions for the value function governed by (SODE) with m-point boundary condi- tion.InSect.3,wetreatanoptimalcontrolproblemgovernedby(SODE)in aseparableBanachspace ⎧ ⎪⎪⎨u¨f(t)+γu˙f(t)=f(t), f ∈S(cid:7)1 (SODE) m(cid:6)−2 (cid:7)⎪⎪⎩uf(0)=x, uf(1)= αiuf(ηi) i=1 where (cid:7) is a measurable and integrably bounded convex compact valued mapping and S1 is the set of all integrable selections of Γ. We show the (cid:7) compactness of the solution set and the existence of optimal control for the problem ⎧ ⎪⎪⎨u¨f(t)+γu˙f(t)=f(t), f ∈S(cid:7)1 m(cid:6)−2 ⎪⎪⎩uf(0)=x, uf(1)= αiuf(ηi), i=1 (cid:7) 1 inf J(t,u (t),u˙ (t),u¨ (t))dt. f f f f∈S1 0 (cid:7) These results lead naturally to the problem of viscosity for the value func- tion associated with this class of (SODE) which is presented in Sect.4. In Sect.5 we deal with a class of (SODE) with Pettis integrable second mem- ber. Existence and compactness of the solution set are also provided. Open problemsconcerningdifferentialgamegovernedby(SODE)and(ODE)with strategies are given in Sect.6. We finish the paper by providing an applica- tiontothedynamicprogrammingprinciple(DPP)andviscositypropertyfor thevaluefunctionassociatedwithasweepingprocessrelatedtoamodelin MathematicalEconomics[25]. 2. ExistenceandUniqueness ∗ Let E be a separable Banach space. We denote by E the topological dual ofE;B istheclosedunitballofE;L([0,1])istheσ algebraofLebesgue E measurablesetson[0,1];λ=dt istheLebesguemeasureon[0,1];B(E)is theσ algebra of Borel subsets ofE. By L1([0,1]),we denote the space of E all Lebesgue–Bochner integrable E-valued functions defined on [0,1]. Let 4 C.Castaingetal. C ([0,1])betheBanach spaceofallcontinuous functions u : [0,1] → E E endowed with the sup-norm and let C1([0,1]) be the Banach space of all E functionsu∈C ([0,1])withcontinuousderivative,endowedwiththenorm E (cid:10) (cid:11) max max (cid:9)u(t)(cid:9), max (cid:9)u˙(t)(cid:9) . t∈[0,1] t∈[0,1] We also denote W2,1([0,1]) the space of all continuous functions in E C ([0,1]) such that their first derivatives are continuous and their second E weakderivativesbelongtoL1([0,1]). E WerecallandsummarizeanewGreentypefunctiongivenin[11]thatis akeyingredientinthestatementoftheproblemsunderconsideration. Lemma2.1.Let0≤τ <η1 <η2 <···<ηm−2 <1,γ >0,m>3bean integernumber,andα ∈R(i =1,...,m−2)satisfyingthecondition i m(cid:6)−2 m(cid:6)−2 α −1+exp(−γ(1−τ))− α exp(−γ(η −τ))(cid:5)=0. (1.1.1) i i i i=1 i=1 LetE beaseparableBanachspaceandletG : [τ,1]×[τ,1] → Rbethe τ functiondefinedby ⎧ ⎨ 1 (1−exp(−γ(t −s))),τ ≤s ≤t ≤1 Gτ(t,s)=⎩γ 0, τ ≤t <s ≤1 A + τ (1−exp(−γ(t −τ)))φ (s), (2.1) τ γ where ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨1−exp(−γ(1−s))−mm(cid:6)(cid:6)i=−−122αi(1−exp(−γ(ηi−s))),τ ≤s<η1 φτ(s)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩1..−..e.x.p(−γ(1−s))− i=2αi(1−exp(−γ(ηi−s))),η1≤s≤η2 1−exp(−γ(1−s)), ηm−2≤s≤1, (2.2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.