ebook img

Advances in Lie Superalgebras PDF

281 Pages·2014·2.008 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Lie Superalgebras

Springer INdAM Series Volume 7 Editor-in-Chief V.Ancona SeriesEditors P.Cannarsa C.Canuto G.Coletti P.Marcellini G.Patrizio T.Ruggeri E.Strickland A.Verra Forfurthervolumes: http://www.springer.com/series/10283 Maria Gorelik • Paolo Papi Editors Advances in Lie Superalgebras Editors MariaGorelik PaoloPapi DepartmentofMathematics DipartimentodiMatematica TheWeizmannInstituteofScience Sapienza–UniversitàdiRoma Rehovot,Israel Roma,Italy ISSN:2281-518X ISSN:2281-5198(electronic) SpringerINdAMSeries ISBN978-3-319-02951-1 ISBN978-3-319-02952-8(eBook) DOI10.1007/978-3-319-02952-8 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013951834 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection withreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeingenteredand executedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplicationofthispub- licationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’s location,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Permis- sionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliable toprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublica- tion,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforanyerrors oromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothe materialcontainedherein. CoverDesign:RaffaellaColombo,GiochidiGrafica,Milano,Italy TypesettingwithLATEX:PTP-Berlin,ProtagoTEX-ProductionGmbH,Germany(www.ptp-berlin.de) SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ThefirstexamplesofLiesuperalgebrasappearinalgebraictopologyinthelate40’s (theWhiteheadproductonhomotopygroupsisaLiesuperalgebrabracket)andin the context of deformation theory of complex structures (Nijenhuis, Frölicher and Nijenhuis) in the late 50’s. Shortly after, Gerstenhaber, in a series of fundamental papers,shednewlightontheroleofLiesuperalgebrasinhistheoryofdeformation ofringsandalgebras,whileSpencerandhiscollaboratorsdevelopedapplicationsto pseudogroupstructuresonmanifolds. A renewed interest in Lie superalgebras came from Physics in the early 70’s: manyexamplesarisenaturallyas“supersymmetries”forquantumfieldtheories,e.g. intheWess-Zuminomodel1.ItwashoweverKac’slandmarkAdvancespaper2which establishedthestudyofLiesuperalgebrasasabranchofAlgebrainitsownright. Since then the subject has received dramatic developments, so that up to now morethan900papershaving“Liesuperalgebra”intheirtitlecanbecountedinthe MathSciNet. Thisvolumeoriginatesfrom“LieSuperalgebras”,heldinRoma,IstitutoNazio- nalediAltaMatematica“FrancescoSeveri”,December14-19,2012. Itconsistsoforiginalpapersand/orextendedexpositionsofthetalksdeliveredat theconference. Webelievethatthecontributions,kindlyofferedbytheinvitedspeakers,clearly illustrate one of the most remarkable features of the theory of Lie superalgebras whichis,theastonishingrangeofitsconnectionswithotherbranchesofMathemat- icsandMathematicalPhysics. Itisourpleasure tothank ProfessorVincenzo Ancona, PresidentofIndam,the ScientificCommitteeandtheentirestaffofIndam,forallowingustheopportunity togathersomanyspecialistsinsuchahighlystimulatingmeeting. 1AthoroughdiscussionoftheroleofLiesuperalgebrasuptothemid70’scanbefoundinCorwin- Ne’eman-Sternberg,Rev.Mod.Ph.,47,575–603(1975). 2Kac,V.G.:Liesuperalgebras.AdvancesinMath.26(1)8–96(1977). v vi Preface Byhappycoincidence,thepublicationofthisvolumecoincideswithVictorKac’s seventiethbirthday.ItwouldbehardtobelievethatthetheoryofLiesuperalgebras wouldhaveprogressedsofarwithouthiscontributioninthefield.Withtheconsent ofallcontributingauthors,wewouldliketodedicatethisvolumetohim. RehovotandRoma MariaGorelik September2013 PaoloPapi Contents Superbosonisation,Rieszsuperdistributions,andhighestweightmodules 1 AlexanderAlldridgeandZainShaikh Homologicalalgebraforosp(1/2n) ................................. 19 KevinCoulembier Finitenessandorbifoldvertexoperatoralgebras ..................... 35 AlessandroD’Andrea OnclassicalfiniteandaffineW-algebras ............................ 51 AlbertoDeSole Q-typeLiesuperalgebras ......................................... 67 MariaGorelikandDimitarGrantcharov WeightmodulesofDDD(((222,,,111,,,ααα))) ..................................... 91 CrystalHoyt OnSUSYcurves ................................................ 101 RitaFioresiandStephenDiwenKwok DiracoperatorsandtheverystrangeformulaforLiesuperalgebras..... 121 VictorG.Kac,PierluigiMösenederFrajriaandPaoloPapi ParaboliccategoryO forclassicalLiesuperalgebras .................. 149 VolodymyrMazorchuk OnKostant’stheoremforLiesuperalgebras......................... 167 ElenaPoletaeva ClassicalLiesuperalgebrasatinfinity .............................. 181 VeraSerganova ClassicalW-algebraswithinthetheoryofPoissonvertexalgebras ....... 203 DanieleValeri vii viii Contents Vertexoperatorsuperalgebrasandoddtracefunctions................ 223 JethrovanEkeren SerrepresentationsofLiesuperalgebras ............................ 235 RuibinZhang Superbosonisation, Riesz superdistributions, and highest weight modules AlexanderAlldridgeandZainShaikh Abstract Superbosonisation, introduced by Littelmann–Sommers–Zirnbauer, is a generalisationofbosonisation,withapplicationsinRandomMatrixTheoryandCon- densedMatterPhysics.Inthissurvey,welinkthesuperbosonisationidentitytoRep- resentationTheoryandHarmonicAnalysisandexplaintwonewproofs,oneviathe Laplacetransformandonebasedonamultiplicityfreenessstatement. 1 Introduction Supersymmetry (SUSY)has its origins in Quantum Field Theory. It is usually as- sociated with High Energy Physics, especially with SUGRA,where the fermionic fields correspond to physical quantities, the mathematical incarnation of a (as yet, hypothetical)fundamentalphenomenon.However,beyondthisfascinatinganddeep theory, and its independent mathematical interest, SUSY also has applications in quitedifferentareasofphysics,notably,inCondensedMatter. Here,thegeneratorsofsupersymmetrydonotcorrespondtophysicalquantities. Rather, they appear as effective symmetries of models for low-temperature limits of the fundamental Quantum Field Theory. This idea goes under the name of the SupersymmetryMethod,andwasdevelopedbyEfetovandWegner[9]. Itsparticularmeritisthepossibilitytoderive,bytheuseofHarmonicAnalysison certainsymmetricsuperspaces,preciseclosedformexpressionsforstatisticalquan- tities–suchasthemomentsoftheconductanceofametalwithimpurities[29,30]– inaregimewherethesystembecomescritical,forinstance,exhibitingatransition fromlocalisationtodiffusion,whichisnottractablebyothermethods. A.Alldridge( ) MathematicalInstitute,UniversityofCologne,Weyertal86–90,50931Köln,Germany e-mail:[email protected] Z.Shaikh MathematicalInstitute,UniversityofCologne,Weyertal86–90,50931Köln,Germany e-mail:[email protected] M.Gorelik,P.Papi(eds.):AdvancesinLieSuperalgebras.SpringerINdAMSeries7, DOI10.1007/978-3-319-02952-8_1,©SpringerInternationalPublishingSwitzerland2014 2 A.AlldridgeandZ.Shaikh Inconnectionwiththephysicsofthinwires,thesubjectwaswellstudiedinthe 1990s;ithasrecentlygainedsubstantialnewinterest,sincethe‘symmetryclasses’ investigatedinthiscontext[4,14,31]havebeenfoundtooccuras‘edgemodes’of certain2Dsystemsdubbed‘topologicalinsulators’(resp.superconductors)[12]. Mathematically, several aspects of the method beg justification. One both sub- tleandsalientpointisthetransformationofcertainintegralsoverflatsuperspacein highdimensionN→∞,whichoccurasexpressionsforstatisticalGreen’sfunctions, intointegralsoveracurvedsuperspaceoffixedrankanddimension–thelatterbeing moreamenabletoasymptoticanalysis(bysteepestdescentorstationaryphase).Tra- ditionally,thisstepisperformedbytheuseoftheso-calledHubbard–Stratonovich transformation,whichisbasedonacarefuldeformationoftheintegrationcontour. Thisposessevereanalyticalproblems,whichtothepresentdayhaveonlybeen overcomeincasesderivedfromrandommatrixensemblesthatfollowthenormaldis- tribution[15].ToextendtheSupersymmetryMethod’srangebeyondGaussiandis- order,forinstancetoestablishuniversalityforinvariantrandommatrixensembles, acomplementarytoolwasintroduced,basedonideasofFyodorov[13]:theSuper- bosonisation Identity of Littelmann–Sommers–Zirnbauer [21]. (A more complete accountofthehistoryofsuperbosonisationistobefoundintheintroductionof[3].) We now proceed to describe this identity. In general, it holds in the context of unitary,orthogonal,andunitary-symplecticsymmetry.Werestrictourselvestothe firstcase(ofunitarysymmetry),althoughourmethodscarryovertotheothercases. One considers the spaceW :=Cp|q×p|q of square super-matrices and a certain subsupermanifold Ωof purely even codimension, whose underlying (Riemannian symmetric) manifold Ω is the product of the positive Hermitian p×p matrices 0 withtheunitaryq×qmatrices.Let f beasuperfunctiondefinedandholomorphic onthetubedomainbasedonHerm+(p)×Herm(q).Thesuperbosonisationidentity states (cid:2) (cid:2) |Dv|f(Q(v))=C |Dy|Ber(y)nf(y), (1) Cp|q×n⊕Cn×p|q Ω forsomefinitepositiveconstantC,provided f hassufficientdecayatinfinityalong themanifoldΩ.Here,QisthequadraticmapQ(v)=vv∗,|Dv|istheflatBerezinian 0 density,and|Dy|isaBereziniandensityonΩ,invariantunderacertainnaturaltran- sitivesupergroupactionwewillspecifybelow. Remark that any GL(n,C)-invariant superfunction on Cp|q×n⊕Cn×p|q may be writtenintheform f(Q(v)).Thus,anotablefeatureoftheformulaisthatitputsthe ‘hidden supersymmetries’ (from GL(p|q,C)) into evidence through the invariant integral over the homogeneous superspace Ωwhere ‘manifest symmetries’ (from GL(n,C))enterviasomecharacter(namely,Ber(y)n). Aremarkablespecialcaseoccurswhen p=0.ThenEq.(1)reducesto (cid:2) (cid:2) |Dv|f(Q(v))=C |Dy|det(y)−nf(y), C0|q×n⊕Cn×0|q U(q) whichisknownastheBosonisationIdentityinphysics.Noticethattheleft-handside isapurelyfermionicBerezinintegral,whereastheright-handsideispurelybosonic.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.