ebook img

Advances in Immunology 66 PDF

322 Pages·1997·19.89 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Immunology 66

ADVANCES IN Immunology EDITED BY FRANK J. DIXON The Scripps Research Institute La Jolla, California ASSOCIATE EDITORS Frederick AH K. Frank Austen Tadamitsu Kishimoto Fritz Melchers Jonathan W. Uhr VOLUME 66 ACADEMIC PRESS San Diego London Boston New York Sydney Tokyo Toronto @ This book is printed on acid-free paper. Copyright 0 1997 by ACADEMIC PRESS All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-1997 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0065-2776/97 $25.00 Academic Press a division of Harcourt Brace & Company 525 B Street, Suite 1900. San Diego, California 92101-4495, USA http://www.apnet.com Academic Press Limited 24-28 Oval Road, London NWI 7DX, UK http://www.hbuk.co.uk/ap/ International Standard Book Number: 0-1 2-022466-6 PRINTED IN THE UNITED STATES OF AMERlCA 97 98 99 00 01 02 EB9 8 7 6 5 4 3 2 1 CONTRIBUTORS Lucien A. Aarden (101), Central Laboratoiy of the Netherlands Red Crosc Blood Transfusion Service, Laboratory for ExperimentaI and Clinical Imniunology, University of Amsterdam, 1066 CX Amsterdam, Tlie Netherlands Richard Bucala ( 197), The Picower Institute for Medical Research, Man- hasset, New York 11030 C. Erik Hack (101), Department of Internal Medicine, Free University I Iospital, 1066 CX Amsterdam, Tlie Netherlands Berhane Ghebrehiwet (225), Division of Allergy and Clinical Immunol- ogy, Department of Medicine, State University of New York, Stony Brook, New York 11794-8161 Juergen Hammer (67), Roclie Milano Ricerche, 1-20132 Milan, Italy Kusumam Joseph (225),D ivision of Allergy and Clinical Immunology, Department of Medicine, State University of New York, Stony Brook, New York 11794-8161 Louis B. Justement (l),D epartment of Microbiology, Division of Devel- opmental and Clinical Immunology, University of Alabama at Bir- mingham, Birmingham, Alabama 35294 Allen P. Kaplan (225), Division of Allergy and Clinical Immunology, Depal-tment of Medicine, State university of New York, Stony Brook, New York 11794-8161 Christine N. Metz (197), The Picower Institute for Medical Research, Manhasset, New York 11030 Sesha Reddigari (225), Division of Allergy and Clinical Immunology, Department of Medicine, State University of New York, Stony Brook, New York 11794-8161 Yoji Shibayama (225),D ivision of‘ Allergy and Clinical Immunology, De- partment of Medicine, State University of New York, Stony Brook, New York 11794-8161 X CONTRIBUTORS Michael Silverberg (225), Division of Allergy and Clinical Immunology, Department of Medicine, State University of New York, Stony Brook, New York 11794-8161 Francesco Sinigaglia (67), Roche Milano Ricerche, 1-20132 Milan, Italy Tiziana Sturniolo (67), Roche Milano Ricerche, 1-20132 Milan, Italy Lambertus G. Thijz (101), Department of Medical Intensive Care Unit, Free University Hospital, 1066 CX Amsterdam, The Netherlands Otto 0. Yang (273), AIDS Research Center, Massachusetts General Hos- pital, Boston, Massachusetts 02114 Bruce D. Walker (273), AIDS Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114 4U\4b( b\ Ih IM\lIINOlO(,\ \OL Rh The Role of CD45 in Signal Transduction LOUIS B. JUSTEMENT Deporlment of Microbiology, Division of Developmentol ond Clinical Immundogy, University of Alabomo at Birmingham, Biiminghom, Akhno 35294 1. Introduction With the growing awareness of the important role that protein tyrosine kinases (PTKs) play in receptor-dependent signaling processes in cells of the hematopoietic lineage, it has become necessary to characterize the complementary function of protein tyrosine phosphatases (PTPs) in order to develop a comprehensive understanding of the molecular mechanisms whereby inducible tyrosine phosphorylation regulates immune cell devel- opment, activation, and differentiation. During the past 20 years the trans- membrane receptor-like PTP CD45 has been extensively characterized and is one of the key enzymes responsible for regulation of inducibIe tyrosine phosphorylation in cells of the hematopoietic lineage (Thomas, 1989; Trowbridge and Thomas; 1994, Alexander, 1997). Although CD45 is expressed by all nucleated cells of the hematopoietic Iineage and is involved in regulating the function of several cell types, including mono- cytes/macrophages, NK cells, mast cells, and basophils, the vast majority of work concerning this PTP has been conducted using T and B lympho- cytes and this review will focus predominantly on those studies. The initial identification of CD45 as a lymphocyte surface antigen was based on studies using monoclonal antibodies (mAbs) that demonstrated that this transmembrane glycoprotein is abundantly expressed by most cells and comprises 5-10% of the surface protein. Subsequent cloning of CD45 at the cDNA and genoinic level revealed several interesting characteristics about the primary structure of this molecule (Thomas, 1989). This PTP consists of a large extracellular domain of approximately 400-500 amino acids, a single transniembrane-spanning region, and a cytoplasmic domain of 700 amino acids (Fig. 1).C D45 can be expressed as one of eight potential isoforms that vary in molecular weight from 180 to 220 kDa due to alternative mRNA splicing of up to three exons (exons 4-6) that encode a variable amino-terminal domain rich in 0-linked sugars. Therefore, alternative mRNA splicing of CD45 can result in a significant degree of heterogeneity in the extracellular domain due to changes in polypeptide structure as well as differential 0-linked glycosylation of the molecule. The expression of CD45 isoforms has been shown to occur in a cell type-specific manner and also varies with the activation or differentia- 1 Copvnght 0 1997 by Ar Jdf mi Press All righta of rqxdurtron m dny form r~servtd M!C-Zi76N7 $25 00 2 LOUIS D. JIJSTEMENT FIG.1 . Schematic representation of the domain structure of murine CD45. The high- molecular-weight isoforin of CD45 containing a11 three alternatively spliced exons is pictured. Exons 4-6 encode amino acids 8-50, 51-99, and 100-146, respectively. All major domain regions are consecutively numbered from amino acid 1 at the amino terminus to amino acid 1268 at the carboy terminus. tion state of lymphocytes. Because studies have documented highly regu- lated patterns of expression for the various isoforrns of CD45, a great deal of effort has been directed toward delineating the overall physiological significance of isoform switching. Although evidence is emerging to suggest that specific CD45 isoforms do perform unique functions in the context of lymphocyte development and activation, this continues to be an issue that is of great interest. Because the different isoforms of CD45 possess identical cytoplasmic domains and exhibit equivalent catalytic activity, stud- ies to elucidate CD45 isoform function have focused predominantly on the role of the extracellular domain in mediating differential interactions with extracellular “ligands” for CD45 (Fig. 2). Based on the knowledge that CD45 is expressed at high levels in lynmpho- cytes and exhibits unique patterns of isoforin-specific expression, it was hypothesized early on that this transmembrane protein serves an important signaling function in lymphocytes. This hypothesis was further strength- ened by studies using mAbs demonstrating that cross-linking of CD45 results in significant alterations in lymphocyte activation in response to mitogenic stimuli. That CD45 is indeed an important regulator of signal transduction in lymphocytes was confirmed when its sequence was coin- pared to that of the soluble PTP, PTPlB, demonstrating that the intracellu- lar region of CD45 contains tandem repeats (PTP domain I and PTP domain 11) that are 40 and 3:3% homologous to the catalytic domain of PTPlB, respectively (Charbonneau et nl., 1988). Subsequent studies confirmed that CD45 is a functional transmembrane PTP (Tonks et ul., 1988), thereby stimulating a renewed intereyt in characterizing the role that this glycoprotein serves in lymphocyte biology. The results from studies CD45 ABC (m) 38\ CD45 Genornic C045 Null (8) 4 Exon 3 4 5 6 7 8 \\ // ;D4;ABCpRNA7 CD45 Null mRNA 3 7 8 FIG.2 . Generation of CD45 isdorms by altcriiative mRNA splicing of exoiis 4-6. Alternative splicing of CD45 results ill the formation of distinct isoforms that vary at the amino terminus in trrnis of their polypeptide and carhohydrate composition. 4 LOUIS l3. JUSTEMENT using mAbs suggested that CD45 acts as a negative regulator of lymphocyte activation in response to antigen receptor ( AgR) ligation. However, studies using CD45-deficient T and B cell lines revealed that the expression of CD45 is in fact required for optimal AgR-mediated signal transduction (Trowbridge and Thomas, 1994; Justement et al., 1994). In general, the results obtained from experiments with CD45-deficient cell lines have been supported by CD45 transgenic and CD45 knockout studies that further demonstrate that CD45 expression is crucial not only for lympho- cyte activation but also for T cell and to a lesser extent B cell development as well (Kishihara et nl., 1993; Byth et nl., 1996). In order to fully delineate the molecular mechanism(s) by which CD45 regulates lymphocyte biology, identification of cellular substrates and eluci- dation of the effect that reversible tyrosine phosphorylation has on their effector function will be required. Along these lines, studies have convinc- ingly demonstrated that CD45 regulates the tyrosine phosphorylation and activity of the Src family PTKs. Although it is readily apparent that the Src family PTKs are important substrates for CD45, and that inhibition of their activation is likely to be a primary cause of altered lymphocyte responsiveness to AgR ligation in cells lacking CD45, it is likely that there are other intracellular effector proteins whose function is also regulated directly by CD45 as a result of dephosphorylation. Once CD45 was determined to be a functional PTP, it became clear that delineation of the mechanism(s) by which its catalytic function is regulated would be crucial for understanding the dynamic way in which lymphocyte biology is regulated by this PTP. However, studies have not yet convincingly elucidated the molecular mechanism responsible for regu- lating the catalytic function of CD45. Although evidence suggests that posttranslational modification of CD45 may be involved, when examined in the context of one another the studies do not support a consensus model. Alternatively, it has been proposed that redistribution of CD45 within the plasma membrane in response to “ligand” binding may result in its physical sequestration, thereby restricting access to substrates within the cell. A related hypothesis proposes that aggregation or redistribution of CD45 within the plasma membrane may lead to alterations in its catalytic activity either through an association with the cytoskeleton or as a result of multi- merization with itself. The various mechanisms that have been proposed to play a role in regulation of CD45 catalytic function are not mutually exclusive and it is quite possible that the overall process is complex and mul- tifaceted. Clearly, a significant amount of progress has been made with regard to the analysis of CD45 structure and function as is evident from the discussion presented in this review. However, there remain several key issues that ROLE OF CD4S IN SIGNAL TRANSDUCTION 5 relate to the physiologcal role for CD45 isoforms, including the identity of extracellular ligands, the identification of intracellular substrates, and the mechanism responsible for regulation of CD45 catalytic activity, for which there are no definitive answers. These questions are currently ac- tively being studied using a wide range of technical approaches and cell systems. II. CD45 Function in Lymphocyte Development and Activation The discovery that CD45 is a transmembrane PTP has stimulated a significant effort to elucidate its functional role in cells of the hematopoietic lineage. In general, three approaches have been used, including experi- ments with anti-CD45 m Abs, CD45-deficient cell lines, and, recently, CD45 transgenic and gene knockout mice. The results obtained from these different experimental approaches have not provided an entirely consistent picture of the functional role played by CD45. Nevertheless, most of the experimental discrepancies can be attributed to technical and procedural issues that are inherently associated with the use of a given procedure, and when the data are viewed as a whole, it is possible to begm to develop a general appreciation of the functional relationships that pertain to CD45. A ANALYSIOSF CD45 FUNCTIOUNS INGM ONOCLONAALN TIBODIES From a historical perspective, mAbs directed against CD45 were used in an attempt to determine whether it is involved in regulation of lymphocyte function long before the identification of this transmembrane protein as a PTP. Several reviews in the literature document studies in which anti- CD45 mAbs have been used to demonstrate a potential role for CD45 in regulation of lymphocyte activation and differentiation, as well as in lymphocyte homotypic aggregation (Thomas, 1989; Trowbridge and Thornas, 1994; Justernent et al., 1994; Alexander, 1997). It is important to note that the interpretation of data obtained from studies using mAbs should take into account several issues, including the experimental ap- proach employed, the specificity of the anti-CD45 mAbs used, and the cell population being examined. As mentioned previously, structural and, presumably, functional characteristics of the extracellular domain of CD45 can vary significantly due to alternative mRNA splicing. This results in the production of distinct CD45 isoforms that differ with respect to their polypeptide backbone. Moreover, different isoforms may exhibit selective patterns of glycosylation depending on the cell type in which they are expressed. Due to the high degree of structural plasticity in the extracellular domain, it is formally possible that cells within a given population may express different isoforms and/or glycosylation variants of CD45. It is also 6 LOUIS D. JUSTEMEN? quite possible that individual cells may express more than one structural form of CD45 in certain circumstances (e.g., during activation and/or differentiation). Therefore, the use of anti-CD45 mAbs to study CD45 function may be complicated by the fact that a given mAb may not recognize every cell within a population or may not bind to all CD45 molecules expressed by a given cell. This could potentially lead to selective effects on subpopulations of cells that would not necessarily be apparent based on phenotypic analysis of the population as a whole. Alternatively, the selective engagement of distinct subsets of CD45 molecules on the surface of a cell could elicit qualitatively different responses, depending on the specific intermolecular interactions that might be perturbed. Finally, even though a cell population may express a single structural variant of CD45, selective modulation of CD45 function might be observed depending on the specific epitope recognized by the particular anti-CD45 mAb used. In other words, binding of mAbs to distinct epitopes within the extracellular domain of CD45 could induce selective changes in CD45 that might affect its catalytic activity and/or interactions with other proteins in the cell. As discussed below, numerous studies have demonstrated that these issues are of practical concern. 1. Studie.s with T Lymphocytes Despite the numerous studies that have been conducted using anti-CD45 mAbs to study the role of CD45 in T cell biology, questions concerning the physiological significance of the findings obtained still remain. This is in part due to the fact that anti-CD45 mAbs have been used as surrogate ligands for CD45, even though it has not yet been definitively proven that physiological ligands for this PTP exist or, if they do, how they might regulate its function. Therefore, it is difficult to interpret how the effects elicited by treatment of cells with anti-CD45 mAbs relate to physiologic situations. Second, anti-CD45 mAbs have been observed to both potentiate and attenuate T cell activation in response to a number of mitogenic stimuli. These contradictory results are presumably due to one or more of the factors discussed previously relating to differences in experimental approach, CD45 isoform expression, or antibody specificity. Moreover, because very few studies have documented the effects that binding of mAbs have on the conformation of CD45, its interaction with other cellular proteins, or its catalytic activity, it is difficult to delineate the mechanism(s) responsible for the observed alterations in T cell function. Finally, it should be noted that these issues are equally relevant to studies using anti-CD45 mAbs in other cell systems (see below). Some of the earliest experiments performed examined the effect that anti-CD45 mAbs had on T cell proliferation in response to T cell mitogens

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.