ebook img

Advances in Food and Nutrition Research, Volume 71 PDF

171 Pages·2014·2.413 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Food and Nutrition Research, Volume 71

ADVISORY BOARDS KEN BUCKLE University ofNew South Wales, Australia MARY ELLEN CAMIRE University ofMaine, USA ROGER CLEMENS University ofSouthern California, USA HILDEGARDE HEYMANN University ofCalifornia, Davis, USA ROBERT HUTKINS University ofNebraska, USA RONALD JACKSON BrockUniversity, Canada HUUB LELIEVELD Global Harmonization Initiative, The Netherlands DARYL B. LUND University ofWisconsin, USA CONNIE WEAVER Purdue University, USA RONALD WROLSTAD Oregon State University, USA SERIES EDITORS GEORGE F. STEWART (1948–1982) EMIL M. MRAK (1948–1987) C. O. CHICHESTER (1959–1988) BERNARD S. SCHWEIGERT (1984–1988) JOHN E. KINSELLA (1989–1993) STEVE L. TAYLOR (1995–2011) JEYAKUMAR HENRY (2011– ) AcademicPressisanimprintofElsevier 225WymanStreet,Waltham,MA02451,USA 525BStreet,Suite1800,SanDiego,CA92101-4495,USA 32JamestownRoad,London,NW17BY,UK TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UK Radarweg29,POBox211,1000AEAmsterdam,TheNetherlands Firstedition2014 Copyright©2014ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://www.elsevier.com/locate/permissions,andselecting ObtainingpermissiontouseElseviermaterial. Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsorproperty asamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructionsorideascontainedinthematerialherein.Becauseofrapid advancesinthemedicalsciences,inparticular,independentverificationofdiagnosesanddrug dosagesshouldbemade. ISBN:978-0-12-800270-4 ISSN:1043-4526 ForinformationonallAcademicPresspublications visitourwebsiteatstore.elsevier.com PrintedandboundinUSA 14 15 16 11 10 9 8 7 6 5 4 3 2 1 CONTRIBUTORS IrisF.F.Benzie DepartmentofHealthTechnologyandInformatics,TheHongKongPolytechnic University,Kowloon,HongKong RuthS.M.Chan DepartmentofMedicineandTherapeutics,TheChineseUniversityofHongKong,Shatin, HongKong BerniceH.K.Cheung DepartmentofMedicineandTherapeutics,TheChineseUniversityofHongKong,Shatin, HongKong Siu-WaiChoi DepartmentofHealthTechnologyandInformatics,TheHongKongPolytechnic University,Kowloon,HongKong ChiaraGori DepartmentofClinicalMedicine,SapienzaUniversity,Rome,Italy JeyakumarHenry ClinicalNutritionResearchCentre,SingaporeInstituteforClinicalSciences,Singapore, Singapore IvanC.H.Ho DepartmentofMedicineandTherapeutics,TheChineseUniversityofHongKong,Shatin, HongKong BhupinderKaur ClinicalNutritionResearchCentre,SingaporeInstituteforClinicalSciences,Singapore, Singapore AlessandroLaviano DepartmentofClinicalMedicine,SapienzaUniversity,Rome,Italy SerenaRianda DepartmentofClinicalMedicine,SapienzaUniversity,Rome,Italy MandyM.M.Sea DepartmentofMedicineandTherapeutics,TheChineseUniversityofHongKong,Shatin, HongKong JeanWoo DepartmentofMedicineandTherapeutics,TheChineseUniversityofHongKong,Shatin, HongKong vii PREFACE The8thWorldCongressonDevelopmentalOriginsofHealthandDisease hasjustendedinSingapore(November2013).Itattractednearly1000sci- entistsfrom52countries.Thediversityandnumberofparticipantssignifies theimportanceofthistopic.The“fetaloriginshypothesis”wasproposedin 1989 by Prof. David Barker, working at the University of Southampton. The fetal origins hypothesis suggests that fetal undernutrition in the first andsecondtrimesterofgestationleadstodisproportionategrowthandpro- grams later coronary heart disease in adulthood. In 1995, British Medical Journalcoinedtheterm“Barkerhypothesis.”Thenotionthatprepregnancy dietandfetalandpostnatalgrowth(allinfluencedbynutrition)cancontrib- ute to long-term health outcomes is a major shift in nutritional paradigm. The Barker hypothesis may bethe single most important medical observa- tionofthetwenty-firstcentury.Thatadultdiseasemayhaveitsrootsinearly life, particularly related to the diet consumed and nutrition, enables us to potentially shape our health destiny by dietary interventions. Here is an example of close synergy between food, nutrition, and health. It testifies the need to better understand the mechanistic, metabolic, physiological, and nutritional consequences of early programming. Advances in Food and Nutrition Research is at the forefront of publishing papers on the interface offoodandnutrition.Intheyearstocome,wewillseehowdietarymanip- ulation early in life can imprint and shape our health trajectory. C. J. HENRY Singapore and Oxford ix CHAPTER ONE Antioxidants in Food: Content, Measurement, Significance, Action, Cautions, Caveats, and Research Needs Iris F.F. Benzie1, Siu-Wai Choi DepartmentofHealthTechnologyandInformatics,TheHongKongPolytechnicUniversity,Kowloon, HongKong 1Correspondingauthor:e-mailaddress:[email protected] Contents 1. Introduction:AntioxidantsinFood—TheirRoleandImportance 2 1.1 Basicconceptsofoxidationandtheroleofantioxidants 2 1.2 Antioxidants:Typesandaction 3 1.3 Acloserlookatascorbicacid:Akeyantioxidant 4 1.4 Humanantioxidantdefenseanddietaryinfluences 6 2. Measuring“TotalAntioxidantContent”ofFood 9 2.1 Basicprinciples,notesoncalibration,units,andconfusion 9 2.2 Limitationsofthe“totalantioxidantcontent”approach:Cautions andcaveats 11 3. TheFRAPAssayandItsModifiedForm(FRASC)forAscorbicAcid 13 3.1 Basicprinciples 13 3.2 TheFRAPassay—Procedureinbrief 14 3.3 ApplicationoftheFRAPassayinfoodscience 16 3.4 Anoteonthe“nonuricacidFRAPvalue”ofbloodplasmaanditsrelevance tonutritionalscience 16 3.5 ThemodifiedFRAPassay(FRASC)fortotalantioxidantandascorbicacid measurement 32 4. WhyIstheAntioxidantContentofFoodofInterest? 33 4.1 Basicconcepts 33 4.2 Antioxidantsandhealth:Theevidenceandpotentialimpact 34 5. AntioxidantsinFood:EnigmasandEvolutionaryAspects 36 6. MechanismsofAction:RedoxIssues,Phytohormesis,andColonicMicrobiota 38 6.1 Redoxtonechangesasadrivingforceforcytoprotectionandthebiological senseofrestrictedbioavailabilityofdietaryantioxidants:Theredox-sensitive KEAP-1–Nrf2signalingpathway 39 6.2 Colonicmicrofloraandmetabolismoffoodantioxidants:Movingintonew territoryofthemicrobiome 42 AdvancesinFoodandNutritionResearch,Volume71 #2014ElsevierInc. 1 ISSN1043-4526 Allrightsreserved. http://dx.doi.org/10.1016/B978-0-12-800270-4.00001-8 2 IrisF.F.BenzieandSiu-WaiChoi 7. TheStorySoFar 43 8. ConcludingRemarksandResearchNeeds 46 Acknowledgments 46 References 47 Abstract Thereareamultitudeofantioxidantsinfoods,especiallyinfoodsofplantorigin.Higher intakeofantioxidant-richfoodsisclearlyassociatedwithbetterhealthandfunctional longevity.Thespecificagentsandmechanismsresponsiblearenotyetclear,butthere isconvincingevidencethatincludingmoreplant-based,antioxidant-richfoods,herbs, andbeveragesinthedietiseffectiveinpromotinghealthandloweringriskofvarious age-relateddiseases.Thecontentofsomeindividualantioxidants,suchasvitaminC,in foodcanbemeasured,butitisnotfeasibletoattempttomeasureeachantioxidant separately,andmethodshavebeendevelopedtoassessthe“totalantioxidantcontent” offoods.Oneofthemostwidelyusedmethodsistheferricreducing/antioxidantpower (FRAP) assay, which is relatively simple, quick, sensitive, and inexpensive to perform. TherearemanypublishedstudiesthathaveusedtheFRAPassay,andthesehavegen- eratedaverylargedatabaseoftotalantioxidantcontentoffoodsthatcanhelpguide foodchoices forincreased antioxidant intake. TheFRAP assay hasalsobeen used to assessthebioavailabilityofantioxidantsinfoodsandtoinvestigatetheeffectsofgrow- ingconditions,storage,processing,andcookingmethodonthetotalantioxidantcon- tentoffood.Thetestcanbeemployedasaqualitycontrolcheckdevice,andtodetect adulterationoffood.Furthermore,inamodifiedform(FRASC),theassaycanmeasure ascorbicacidcontentalmostsimultaneouslywiththetotalantioxidantcontentofthe sample.Inthischapter,basicconceptsofoxidationandtheroleofantioxidants,aswell asthetypesandactionofdifferentantioxidantsinfoodswillbereviewedbriefly,andthe underpinningconceptsandevidenceforhealthbenefitsofincreasedintakeofdietary antioxidantswillbediscussed,withsomefocusonvitaminC,andalsointhecontextof ourevolutionarydevelopment.Thebasicconceptsandlimitationsofmeasuring“total antioxidantcontent”offoodwillbepresented.TheFRAPassayandthemodifiedversion FRASCwillbedescribed,andthetotalantioxidantcontent(astheFRAPvalue)ofarange offoods willbe presented. Finally,issues ofbioavailability and redox balance willbe discussedinrelationtothebiologicalsignificanceandmolecularactionofantioxidants infoods,somecautionandcaveatsarepresentedaboutovercomingbiologicalbarriers toabsorptionofantioxidantphytochemicals,andresearchneedstofurtherourunder- standingintheimportantareaoffood,antioxidants,andhealthwillbehighlighted. 1. INTRODUCTION: ANTIOXIDANTS IN FOOD—THEIR ROLE AND IMPORTANCE 1.1. Basic concepts of oxidation and the role of antioxidants Inchemicalterms,oxidationistheadditionofoxygentoortheremovalof hydrogen or an electron from a molecule. A biological antioxidant can be AntioxidantsinFood 3 defined as a substance that prevents the oxidation of an important biomol- ecule, such as afatty acid, DNA, or a protein, by areactive oxygen species (ROS) (Ames, 1998; Halliwell & Gutteridge, 2007). ROS are partially reduced or “energized” forms of oxygen (Table 1.1). Some ROS contain anunpairedelectroninanorbitalandaresometimesreferredtoas“freerad- icals”;others,suchashydrogenperoxideandsingletoxygen,arenonradical species,buttheirreactivity isnonethelessgreater thanground-state molec- ular oxygen, allowing them to oxidize biomolecules they interact with. Some ROS have important physiological functions (Ames, 1998; Halliwell & Gutteridge, 2007). For example, nitric oxide is a vasodilator, hydrogenperoxideisakeyintracellularsignalingmolecule,andsuperoxide andhydrochlorousacidplayanimportantroleinourinnateimmunedefense (Winketal.,2011).However,anexcessofROScanleadtouncontrolledor indiscriminate oxidation of important biomolecules. This deleteriously affects their structure and function and is known as “oxidative stress” (Ames, 1998; Halliwell & Gutteridge, 2007). The imbalance that results in oxidative stress can be caused by excessive production of ROS, or to a deficit in the antioxidants that oppose ROS and their damaging oxidative effects (Fig. 1.1). 1.2. Antioxidants: Types and action Inanoxygenicenvironment,thethreatofoxidativestressisubiquitousand continuousforallorganisms,butthephotosensitizingplantsthatarerespon- sible for our oxygenic environment are exposed to particularly high Table1.1 TypesofROSandrelativereactivity ROS Redoxcouple E(cid:1)0 (mV) Hydroxyl radical HO%,Hþ/H O þ2310 2 Alkoxyl radical RO%,Hþ/ROH þ1600 Peroxylradical ROO%, Hþ/ROOH þ1000 Glutathiyl radical GS%/GS(cid:3) þ920 Tocopheroxyl radical TO%,Hþ/TOH þ480 Hydrogen peroxide H O , Hþ/H O, HO% þ320 2 2 2 Ascorbate radical Asc%(cid:3),Hþ/AscH(cid:3) þ282 Superoxide radical O /O%_ (cid:3)330 2 2 One-electronreductionpotentialsatpH7.0. Source:HalliwellandGutteridge(2007). 4 IrisF.F.BenzieandSiu-WaiChoi Figure 1.1 The concept of antioxidant/oxidant imbalance and the development of oxidativestress. intracellularlevelsofoxygenandROSandhaveevolvedspecializeddefense factors to deal with the high oxidant challenge and protect plant structures and tissues (Benzie, 2000). These factors are referred to as antioxidants. The best-known antioxidant is vitamin C (ascorbic acid), but there are various others, and many are unique to the plant kingdom. These include “vitamin E,” a group of eight tocopherols and tocotrienols, and the very large families of flavonoids and carotenoids (Benzie, 2005; Buettner, 1993;Gey,1998;Tametal.,2005).Indeed,therearethousandsofdifferent antioxidants in plants, and they work in different ways (Table 1.2). Some antioxidantspreventthegenerationofROS,someareenzymesthatdestroy ROS,somearesmallwater-solublemoleculesthatactasreducing(hydrogen or electron-donating) agents to “neutralize” free radicals, and some absorb electrons or excess energy from ROS and “dissipate” this within their complex lipophilic structure (Ames, 1998; Halliwell & Gutteridge, 2007). Overall, the effect is to oppose ROS action and limit oxidative stress. 1.3. A closer look at ascorbic acid: A key antioxidant Vitamin C (ascorbic acid) is present in high concentration in many plants (Benzie & Wachtel-Galor, 2009; Frei et al., 1989; Gey, 1998; Halliwell & Gutteridge, 2007; Halvorsen et al., 2002). The content of this water-solubleantioxidantisparticularlyhighinfruits,butitisfoundinvar- iousplantpartsandaidsrepairandgrowthofplantsandtheripeningofseeds. AntioxidantsinFood 5 Table1.2 Plant-derivedantioxidanttypes,action,andsources Antioxidant Action Mechanism Sources Ascorbicacid Scavenging Sacrificial interaction Fruits and vegetables, (vitaminC) of ROS byreplaceable or particularly recyclable substrates to strawberries, citrus, scavenge and destroy kiwi, Brussels sprouts, ROS cauliflower,some Chinesegreen vegetables “VitaminE”(a,b, Quenching Absorptionofelectrons Green leafy vegetables d, g)isomers of ofROSand and/orenergy (e.g., spinach); nuts, tocopherols and chain seeds, especially wheat tocotrienols breaking germ; vegetable oils, especially sunflower Carotenoids Chain Chainbreaking atlow Orange/redfruitsand (hundreds) breaking partialpressures of vegetables (e.g., carrot, oxygen,complements tomato,apricot,melon, action of vitamin E pumpkin),green leafy vegetables, peppers Flavonoids (large Scavenging Sacrificial interaction Berries, apples, onions, range of different of ROS tea,red wine, some types) herbs (parsley,thyme) citrus fruits,grapes, cherries Source:HalliwellandGutteridge(2007). Mostanimals,fish,andreptilescansynthesizevitaminCinliverorkidney, buthumanshavelosttheabilitytomakeascorbicacid,eventhoughwehave retained an absolute requirement for it (Benzie, 2000, 2003; Benzie & Strain,2005;Freietal.,1989).Ascorbicacidisknowntobeneededforcol- lagen synthesis in humans, and severe deficiency results in scurvy, which is nowadaysrarebutcasesarenonethelessstillreported(Doll&Ricou,2013). Humans must obtain a regular and adequate dietary supply to maintain plasmaandtissuelevels,andthebestdietarysourcesarefruitsandvegetables (Frei et al., 1989). In the past, the daily recommended intake of vitamin C was set at a level ((cid:4)30mg/day) that would prevent overt deficiency (Newton et al., 1983). However, accumulated epidemiological and exper- imentalevidenceindicatesthattheroleofascorbicacidinthehumanbodyis notrestrictedtocollagensynthesisandthatithasanimportantroleinhealth maintenance overall (Benzie,1999). Ascorbic acid is recognized as a major 6 IrisF.F.BenzieandSiu-WaiChoi playerinhumanantioxidantdefense(Benzie,1999,2000).Currentdietary recommendations are for at least 70mg/day for women, 100mg/day for men, with higher levels advised in pregnancy and for smokers (Carr & Frei,1999).Theselevelsofintakearerecommendedtoattain“optimal”sta- tusforhealth,thoughthishasnotbeenclearlydefined.Humancells,espe- cially white blood cells, and some organs, most notably the eye, contain millimolarconcentrationsofascorbicacid(Choyetal.,2001,2003).Plasma ascorbic acid concentrations in the fasting state range quite widely, from <10 (worryingly low) to (cid:4)100mmol/l in apparently healthy adults (Choi etal.,2004).Tissueandplasmalevelsaremaintainedby,andsoreflect,die- taryintakeofvitaminC,andtheplasmaconcentrationofascorbicacidcan act as a marker of fruit and vegetable intake (provided no supplements are used) (Choi et al., 2004). A concentration <10mmol/l indicates very low intake and severe deficiency, even if signs of scurvy are not clearly present (Levineetal.,2011).Plasmalevelsat1–2hafteringestionofalargedose(1g ormore)ofvitaminCcanapproach200mmol/l,butpeaklevelsarelimited byrestrictedgastrointestinalabsorptionofalargedoseandbyurinarylossof ascorbicacidwhentheplasmaconcentrationexceedstherenalthresholdof (cid:4)100mmol/l(Levineetal.,2011).Therefore,mostofasingle,largedoseis notretainedinthebody,andregular,modestdoses(500mgorless)arelikely to be more effective in enhancing the ascorbic acid status of the body. In large prospective trials, it has been shown that healthy people with higher fasting plasma concentrations of food-derived ascorbic acid (i.e., not from supplements) have significantly lower risk of incident diabetes, cancer, stroke, heart failure, and all cause mortality in the ensuing years (Fig. 1.2; Hardingetal.,2008;Pfisteretal.,2011).Ithasbeenestimatedthatforevery 20mmol/l increase in fasting plasma ascorbic acid concentration, there is a 9%relativereductioninriskofincidentheartfailureanda29%decreasein risk of incident type 2 diabetes (Harding et al., 2008; Pfister et al., 2011). Plant-based food is the primary source of ascorbic acid in human plasma. However, it must be noted that the protective agent may not be vitamin C itself. It could be something very closely associated with vitamin C in plant-basedfoods,oritcouldbethatthehealthbenefitsareduetotheinter- active effects of the various antioxidants present in plant-based foods. 1.4. Human antioxidant defense and dietary influences ThehumanbodyisexposedtoROSonacontinuousbasis,andwehavean effective antioxidant defense system that has evolved to help deal with the

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.