ADVANCES IN ENZYMOLOGY ANDRELATEDAREASOF MOLECULARBIOLOGY Volume76 ADVANCES IN ENZYMOLOGY AND RELATEDAREAS OF MOLECULAR BIOLOGY Edited by ERIC J. TOONE DUKE UNIVERSITY, DURHAM, NORTH CAROLINA VOLUME76 Copyright(cid:1)2009byJohnWiley&Sons,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans,electronic,mechanical,photocopying,recording,scanning,or otherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyright Act,withouteitherthepriorwrittenpermissionofthePublisher,orauthorizationthrough paymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222Rosewood Drive,Danvers,MA01923,978-750-8400,fax978-750-4470,oronthewebatwww.copyright. com.RequeststothePublisherforpermissionshouldbeaddressedtothePermissions Department,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,201-748-6011, fax201-748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespectto theaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimany impliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymay becreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha professionalwhereappropriate.Neitherthepublishernorauthorshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat877-762-2974,outsidethe UnitedStatesat317-572-3993orfax317-572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappears inprintmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: ISBN978-0471-23584-2 PrintedintheUnitedStatesofAmerica 10987654321 CONTENTS Contributors .. . . .. . . .. . .. . . .. . . .. . . .. . . .. . .. . . .. . . . vii Preface.. . . .. . . .. . . .. . .. . . .. . . .. . . .. . . .. . .. . . .. . . . ix Inosine 50-Monophosphate Dehydrogenase. .. . . .. . .. . . .. . . . 1 Maxim Pimkin and GeorgeD. Markham Natural ProductGlycosyltransferases: Properties andApplications . .. . .. . . .. . . .. . . .. . . .. . .. . . .. . . . 55 Gavin J. Williamsand Jon S. Thorson Combinatorial andEvolutionary Design of Biosynthetic Reaction Sequences . . .. . . .. . . .. . . .. . . .. . .. . . .. . . 121 Ethan T. Johnson, Erik Holtzapple, and Claudia Schmidt-Dannert Trends inMicrobial Synthesis ofNatural Products andBiofuels. .. . . .. . . .. . . .. . . .. . .. . . .. . . 151 Joseph A. Chemier,Zachary L. Fowler, MattheosA. G.Koffas, andEffendiLeonard Author Index.. . . .. . . .. . .. . . .. . . .. . . .. . . .. . .. . . .. . . 219 Subject Index . . . .. . . .. . .. . . .. . . .. . . .. . . .. . .. . . .. . . 243 v CONTRIBUTORS JOSEPHA.CHEMIER, DepartmentofChemicalandBiologicalEngineering,University ofBuffalo,303FumasHall,Buffalo,NY14260 ZACHARY L. FOWLER, Department of Chemical and Biological Engineering, UniversityofBuffalo,303FumasHall,Buffalo,NY14260 ERIKHOLTZAPPLE, DepartmentofBiochemistry,MolecularBiologyandBiophysics, UniversityofMinnesota,1479GortnerAvenue,St.Paul,MN55108 ETHANT.JOHNSON, DepartmentofBiochemistry,MolecularBiologyandBiophysics, UniversityofMinnesota,1479GortnerAvenue,St.Paul,MN55108 *MATTHEOS A. G. KOFFAS, Department of Chemical and Biological Engineering, UniversityofBuffalo,303FumasHall,Buffalo,NY14260 [email:[email protected]] EFFENDILEONARD, DepartmentofChemicalEngineering,MassachusettsInstituteof Technology,77MassachusettsAvenue,Amherst,MA02139 *GEORGED.MARKHAM, TheFoxChaseCancerCenter,InstituteforCancerResearch, 333CottmanAvenue,Philadelphia,PA19111[email:[email protected]] MAXIMPIMKIN, TheFoxChaseCancerCenter,InstituteforCancerResearch,333 CottmanAvenue,Philadelphia,PA19111 *CLAUDIASCHMIDT-DANNERT, DepartmentofBiochemistry,MolecularBiologyand Biophysics,UniversityofMinnesota,1479GortnerAvenue,St.Paul,MN55108 [email:[email protected]] *JONS.THORSON, LaboratoryforBiosyntheticChemistry,PharmaceuticalSciences Division,SchoolofPharmacy,NationalCooperativeDrugDiscoveryProgram, UniversityofWisconsin—Madison,777HighlandAvenue,Madison,WI53705 [email:[email protected]] GAVIN J. WILLIAMS, Laboratory for Biosynthetic Chemistry, Pharmaceutical SciencesDivision,SchoolofPharmacy,NationalCooperativeDrugDiscovery Program,UniversityofWisconsin—Madison,777HighlandAvenue,Madison, WI53705 *Correspondingauthor. vii PREFACE Naturalproducts continue toplay animportant roleinthe treatmentof human disease. Among the most daunting limitations to the use of such speciesistheneedforsyntheticapproachestothesignificantquantitiesof material needed for biochemical study, preclinical and clinical evaluation and,ultimately,supply.Althoughsyntheticchemistryhasmadetremendous advancesinenantiopuresynthesis,materiallimitationsstillloomlargeinthe developmentofnatural product therapeutics. Enzymesarebynowwellestablishedaschiralcatalystsfortheconstruc- tion of small chiral synthons, and the use of various esterases, lipases, oxidoreductases,andotherenzymesiswellknownbothfortheresolutionof racemates and for the desymmetrization of optically inactive meso com- pounds. But the construction of complex natural products often requires dozens of transformations beginning from such simple starting materials. Complex materials are constructed in vivo through multiple sequential enzymatictransformations,producingproductsofstartlingcomplexitywith apparent ease. The development of novel in vivo biosynthetic pathways mighteasethemateriallimitationsfordrugdevelopment:theconstruction and use of such pathways forms the focus of this volume of Advances in Enzymology. A surprising number of biosynthetic pathways are modular, creating a diversity of products by subtle rearrangement of genes. This modular approach to natural product biosynthesis provides a potentially powerful approach to the construction of large numbers of related complexnatural productsandtothepreparationonscaleofsinglecompounds.Twochapters in this volume, by Claudia Schmidt-Dannert and coworkers and by Mat- theos Koffas and coworkers, review various aspects of such approaches. Glycosylation is increasingly recognized as a powerful modulator of the biological activities of complex natural products, both with regards to biologicallifetimesandaffinityandavidityatthetargetreceptor.Chemi- cal glycosylation is notoriously refractive, and in vivo approaches to glycosylation are especially attractive: the use of native and engineered ix x PREFACE glycosyltransferasesforthepreparationofglycosylatednaturalproductsis described here by Williams and Thorson. Finally, Pimkin and Markham describethestructure,activityandinhibitionofthenicotinamide-dependent inosine-50-monophosphate dehydrogenase. ERIC J. TOONE Figure1.4. StructuresofIMPDH.(Seetextforfulldescription.) Figure1.6. IMPDHconformationalflexibility.Superpositionofa-carbontracesofmonomer coredomainsindifferentstructures.(A)Structuralflexibilityoftheactive-siteloopandactive- siteflap.Superimpositionoftheentirecoredomainsof1jr1,1b3o,1eep,1zfj,1ak5,and1pvn. ThesubstrateIMPofS.pyogenesstructure(1zfj)isshowninCPK-coloredstickrepresentation. The1zfjactive-siteCysisshownasaCPK-coloredspace-fillmodel.(B)Changeintheactive- siteloop6conformationupon6-Cl-IMPbinding.Superimpositionoftheentirecoredomainsof 1nfb,1zfj,and1jr1.TheIMPsubstrateof1zfjandthe6-Cl-IMPadductareshowninstick representation.(C)PositionoftheCBSsubdomainindifferentIMPDHstructuresrelativetothe enzyme core domain. The substrate IMP of 1zfj structure is illustrated in red space-fill representation.Thehumantype2structureisingold(1b3o),thehamsterstructureindark blue(1jr1),theS.pyogenes(1zfj)structureingreen,theB.burgdorferistructure(1eep)ingrey, theT.foetusapoenzymestructureinmagenta(1ak5),thehumantype2structureincomplexwith (cid:1) 6-Cl-IMPandNADinred,andtheT.foetusEMMPcomplexincyan(1pvn).UCSFChimera (36a)wasusedforthecoordinatesuperpositionandstructurevisualization. Figure1.7. StereoviewofthetransitionstateanalogyofMMPinT.foetusstructure(1pvn)and mechanismofwateractivation.Thedistancesareindicatedwithdottedlines. Figure1.9. PlausiblestructuraldynamicsoftheIMPDHcatalyticcycle.Theactive-siteloop6 andtheflapappeartoberelativelydisorderedintheabsenceofsubstrates.BindingofIMP causes a conformational change in the loop; the flap remainslargely disordered.After the hydridetransferiscomplete,NADHdissociatesandtheflapmovesintotheNADsite,activating waterandconvertingtheenzymetoahydrolase.