ebook img

Advances in Control System Technology for Aerospace Applications PDF

192 Pages·2016·7.514 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advances in Control System Technology for Aerospace Applications

Lecture Notes in Control and Information Sciences 460 Eric Feron Editor Advances in Control System Technology for Aerospace Applications Lecture Notes in Control and Information Sciences Volume 460 Series editors Frank Allgöwer, Stuttgart, Germany Manfred Morari, Zürich, Switzerland Series Advisory Boards P. Fleming, University of Sheffield, UK P. Kokotovic, University of California, Santa Barbara, CA, USA A.B. Kurzhanski, Moscow State University, Russia H. Kwakernaak, University of Twente, Enschede, The Netherlands A. Rantzer, Lund Institute of Technology, Sweden J.N. Tsitsiklis, MIT, Cambridge, MA, USA About this Series Thisseriesaimstoreportnewdevelopmentsinthefieldsofcontrolandinformation sciences—quickly, informally and at a high level. The type of material considered for publication includes: 1. Preliminary drafts of monographs and advanced textbooks 2. Lectures on a new field, or presenting a new angle on a classical field 3. Research reports 4. Reports of meetings, provided they are (a) of exceptional interest and (b) devoted to a specific topic. The timeliness of subject material is very important. More information about this series at http://www.springer.com/series/642 Eric Feron Editor Advances in Control System Technology for Aerospace Applications 123 Editor EricFeron Schoolof Aerospace Engineering Georgia Institute of Technology Atlanta, GA USA ISSN 0170-8643 ISSN 1610-7411 (electronic) Lecture Notesin Control andInformation Sciences ISBN978-3-662-47693-2 ISBN978-3-662-47694-9 (eBook) DOI 10.1007/978-3-662-47694-9 LibraryofCongressControlNumber:2015944442 SpringerHeidelbergNewYorkDordrechtLondon ©Springer-VerlagBerlinHeidelberg2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer-VerlagGmbHBerlinHeidelbergispartofSpringerScience+BusinessMedia (www.springer.com) Preface On June 11 and 12, 2012, several engineers and researchers from industry and academia met at the Georgia Institute of Technology to discuss the present and future ofaerospacedecisionand control. Thisworkshop washostedby theSchool of Aerospace Engineering and the Decision and Control Laboratory. Featured in thisworkshopwereaircraftandspacecraftcontrolandautonomy,airtrafficcontrol and management, and embedded software verification and validation. From this workshop came the five essays printed thereafter. Whetherfocusingonaeronauticalorspaceapplications,thedecisionandcontrol sciencesoftodaylargelysupersedetheservomechanismtheorythatusedtobe,and still is, taught in all aerospace undergraduate curricula. Yet, the concern for mathematical rigor and safety present in even the most basic control course is the fertile ground upon which new disciplines, such as autonomy, can develop with a genuine concern for applicability to aerospace systems. In this volume, the reader will find a broad variety of topics that all share highly dynamical, real-time, and safety- or mission-critical decision-making as core elements. When looking at the space adventure, the reader will see that autonomy is becoming, de facto, the prime mechanism through which humanity can project its mind and soul onto faraway, extraterrestrial destinations. In an increasingly tech- nological world, the reader will, however, get some appreciation for the gap that separates the extremely high promise of autonomy technology for aerial applica- tions from our ability to understand it well enough to let it take over part of our overhead traffic. Likewise, the reader will get an appreciation for the astonishing range of control issues raised by air transportation, including optimal control, queuing systems, and combinations of the above. Professor Gary Balas understood, perhaps better than anyone else in the trade, the vastly expanded scope that the decision and control sciences need to cover to addressthechallengesthataerospaceengineeringfacestoday.Hepresidedoverthe fast transformation of the aerospace decision sciences by fostering a climate of opennesstowardthenewaerospacedecisionandcontrolsciences,whethertheyare v vi Preface named autonomy, software analysis, air traffic control, or human-centric systems, within his own University of Minnesota and the Department of Aerospace EngineeringandMechanics,whichheledwithenthusiasmandhumor.Thisvolume is dedicated to his memory. Atlanta Eric Feron March 2015 Contents 1 Spacecraft Autonomy Challenges for Next-Generation Space Missions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Joseph A. Starek, Behçet Açıkmeşe, Issa A. Nesnas and Marco Pavone 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 High-Level Challenges and High-Priority Technologies for Space Autonomous Systems . . . . . . 3 1.2 Relative Guidance Algorithmic Challenges for Autonomous Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Challenges and Future Directions . . . . . . . . . . . . . . . 11 1.3 Extreme Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2 Need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.4 Challenges and Future Directions . . . . . . . . . . . . . . . 24 1.4 Microgravity Mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4.2 Need. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.4 Challenges and Future Directions . . . . . . . . . . . . . . . 35 1.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 New Guidance, Navigation, and Control Technologies for Formation Flying Spacecraft and Planetary Landing . . . . . . . 49 Fred Y. Hadaegh, Andrew E. Johnson, David S. Bayard, Behçet Açıkmeşe, Soon-Jo Chung and Raman K. Mehra 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 vii viii Contents 2.2 GN&C Technologies for Planetary Landing in Hazardous Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.2 Design Considerations. . . . . . . . . . . . . . . . . . . . . . . 52 2.2.3 Case Study 1: Mars Robotic System. . . . . . . . . . . . . 53 2.2.4 Case Study 2: Crewed Lunar System. . . . . . . . . . . . . 55 2.2.5 System Comparison . . . . . . . . . . . . . . . . . . . . . . . . 57 2.3 Phase Synchronization Control of Spacecraft Swarms . . . . . . . 58 2.3.1 Problem Statement—Controlling the Phase Differences in Periodic Orbits. . . . . . . . . . . . . . . . . . 59 2.3.2 Phase Synchronization Control Law with Adaptive Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.3 Main Stability Theorems and Simulation Results . . . . 62 2.4 Application of Probabilistic Guidance to Swarms of Spacecraft Operating in Earth Orbit. . . . . . . . . . . . . . . . . . 64 2.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.2 Probabilistic Guidance Problem . . . . . . . . . . . . . . . . 65 2.4.3 Probabilistic Guidance Algorithm (PGA). . . . . . . . . . 66 2.4.4 Adaptation of PGA to Earth Orbiting Swarms . . . . . . 68 2.5 Nonlinear State Estimation And Sensor Optimization Problems for Detection of Space Collision Events. . . . . . . . . . 70 2.5.1 LEO Sensor Constellation Design and Collision Event Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.2 Satellite Collision Modeling and Estimation. . . . . . . . 73 2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3 Aircraft Autonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Piero Miotto, Leena Singh, James D. Paduano, Andrew Clare, Mary L. Cummings and Lesley A. Weitz 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.1.1 Challenges to the Safe Integration of UAVs in the National Airspace . . . . . . . . . . . . . . . . . . . . . 83 3.1.2 Technical Enhancements for Safe Insertion of UAVs in the NAS . . . . . . . . . . . . . . . . . . . . . . . 84 3.2 On-Board Air Autonomy Systems Needs. . . . . . . . . . . . . . . . 86 3.2.1 Challenges to Integration of UAVs in the NAS . . . . . 86 3.2.2 Technical Enhancements for Improved In-Air autonomy—Key Technologies . . . . . . . . . . . . . . . . . 87 3.2.3 Conclusions: A Road-Map to Address the Technical Challenges. . . . . . . . . . . . . . . . . . . . . 89 3.3 Human-Automation Collaboration. . . . . . . . . . . . . . . . . . . . . 92 3.3.1 Challenges in the Collaborative Human-Automation Scheduling Process. . . . . . . . . . . . . . . . . . . . . . . . . 92 Contents ix 3.3.2 Candidate Methods in Human-Automation Collaborative Scheduling. . . . . . . . . . . . . . . . . . . . . 94 3.3.3 Technical Enhancements needed for Humans Interactions with Scheduling Algorithms . . . . . . . . . . 95 3.3.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.4 Autonomy Evolution for Air Traffic Control . . . . . . . . . . . . . 98 3.4.1 Challenges and Limitations of Current Air Traffic Management System. . . . . . . . . . . . . . . . . . . . . . . . 99 3.4.2 Enhancements Made Within ATC System . . . . . . . . . 99 3.4.3 Technical Enhancements needed in the Evolution of Airborne and Ground-Based Technologies. . . . . . . 101 3.4.4 Conclusions and Proposed Road-Map . . . . . . . . . . . . 103 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 Challenges in Aerospace Decision and Control: Air Transportation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Hamsa Balakrishnan, John-Paul Clarke, Eric M. Feron, R. John Hansman and Hernando Jimenez 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2 Key NextGen Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3 Supporting Technology Research Challenges . . . . . . . . . . . . . 111 4.3.1 Design of Automation with Graceful Degradation Modes. . . . . . . . . . . . . . . . . . . . . . . . . 112 4.3.2 System Verification and Validation (V&V) . . . . . . . . 112 4.3.3 Large-Scale, Real-Time Optimization Algorithms . . . . 113 4.3.4 Multi-Objective, Multi-Stakeholder, Optimization Frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4 Domain-Specific Research Challenges. . . . . . . . . . . . . . . . . . 114 4.4.1 Airport Arrival Management . . . . . . . . . . . . . . . . . . 114 4.4.2 Airport Departure Processes. . . . . . . . . . . . . . . . . . . 116 4.4.3 The Trip is Not Over: Passenger Management in the Terminals. . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.4.4 Domain-Specific Contributions: Abstract Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 From Design to Implementation: An Automated, Credible Autocoding Chain for Control Systems . . . . . . . . . . . . . 137 Timothy Wang, Romain Jobredeaux, Heber Herencia, Pierre-Loïc Garoche, Arnaud Dieumegard, Éric Feron and Marc Pantel 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2 Credible Autocoding Framework . . . . . . . . . . . . . . . . . . . . . 139 5.2.1 Input and Output Languages of the Framework . . . . . 141

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.