SOLUTIONS MANUAL FOR ADVANCED TOPICS IN APPLIED MATHEMATICS Sudhakar Nair c (cid:13) S. Nair ii Contents 1 GREEN’S FUNCTIONS 5 2 INTEGRAL EQUATIONS 59 3 FOURIER TRANSFORMS 93 4 LAPLACE TRANSFORMS 149 1 2 CONTENTS Preface This is the solutions manual to accompany the text, “Advanced Topics in Applied Mathematics.” I have attempted to show all the intermediate steps in the solutions. For the convenience of posting solutions, a new solution appearsonanewpage. Pleaseletmeknowifanyonenoticesanyerrors. Some figures were created using the MathematicaTM package and I am indebted to Wolfram Research Incorporated. S. Nair ( [email protected]) Illinois Institute of Technology, Chicago, Illinois 3 4 CONTENTS Chapter 1 GREEN’S FUNCTIONS 1.1 The deflection of a beam is governed by the equation d4v EI = p(x) dx4 − where EI is the bending stiffness and p(x) is the distributed loading on the beam. If the beam has a length ℓ, and at both the ends the deflection and slope are zero, obtain expressions for the deflection by direct integration, using the Macaulay brackets when necessary, if a) p(x) = p , 0 b) p(x) = P δ(x ξ), 0 − c) p(x) = M δ (x ξ). 0 ′ − Obtain the Green’s function for the deflection equation from the pre- ceding calculations. Solution Let us make the substitution x x/ℓ. The derivative of the delta → function in Part (c) will bring 1/ℓ when the non-dimensional x is used. The beam equation becomes (a) p ℓ4 p ℓ4 0 0 v = , v = [x+C ], ′′′′ ′′′ 1 − EI − EI p ℓ4 x2 0 v = [ +C x+C ], ′′ 1 2 − EI 2 p ℓ4 x3 x2 0 v = [ +C +C x+C ], ′ 1 2 3 − EI 3 2 p ℓ4 x4 x3 x2 0 v = [ +C +C +C x+C ]. 1 2 3 4 − EI 24 6 2 5 6 CHAPTER 1. GREEN’S FUNCTIONS Using the boundary conditions v(0) = 0, v (0) = 0, C = 0, C = 0. ′ 4 3 Using 1 1 1 1 1 v(1) = 0, v (1) = 0, C +C = , C + C = . ′ 1 2 1 2 2 −6 6 2 −24 Solving 1 1 C = , C = . 1 2 −2 12 p ℓ4 x4 x3 x2 0 v(x) = + , − EI 24 − 12 24 (cid:20) (cid:21) p ℓ4 = 0 (x 1)2x2. −24EI − (b) P ℓ4 P ℓ4 v = 0 δ(x ξ), v = 0 [ x ξ 0 +C ], ′′′′ ′′′ 1 − EI − − EI h − i P ℓ4 v = 0 [ x ξ 1+C x+C ], ′′ 1 2 − EI h − i P ℓ4 1 1 v = 0 [ x ξ 2 + C x2 +C x+C ], ′ 1 2 3 − EI 2h − i 2 P ℓ4 1 1 1 v = 0 [ x ξ 3 + C x3 + C x2 +C x+C ]. 1 2 3 4 − EI 6h − i 6 2 Using v(0) = 0 = v (0), C = C = 0. ′ 4 3 Using 1 1 1 1 1 v(1) = 0 = v (1), C +C = (1 ξ)2, C + C = (1 ξ)3, ′ 1 2 1 2 2 −2 − 6 2 −6 − Then C = (1+2ξ)(1 ξ)2, C = ξ(1 ξ)2. 1 2 − − −