Structural Integrity 10 Series Editors: José A. F. O. Correia · Abílio M. P. De Jesus Zengtao Chen Abdolhamid Akbarzadeh Advanced Thermal Stress Analysis of Smart Materials and Structures Structural Integrity Volume 10 Series Editors JoséA.F.O.Correia,FacultyofEngineering,UniversityofPorto, Porto,Portugal AbílioM.P.DeJesus,FacultyofEngineering,UniversityofPorto,Porto,Portugal Advisory Editors Majid Reza Ayatollahi, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran Filippo Berto, Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway Alfonso Fernández-Canteli, Faculty of Engineering, University of Oviedo, Gijón, Spain Matthew Hebdon,VirginiaState University,VirginiaTech,Blacksburg,VA,USA Andrei Kotousov, School of Mechanical Engineering, University of Adelaide, Adelaide, SA, Australia Grzegorz Lesiuk, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland Yukitaka Murakami, Faculty of Engineering, Kyushu University, Higashiku, Fukuoka, Japan Hermes Carvalho, Department of Structural Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Shun-Peng Zhu, School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China TheStructuralIntegritybookseriesisahighlevelacademicandprofessionalseries publishing research on all areas of Structural Integrity. It promotes and expedites the dissemination of new research results and tutorial views in the structural integrity field. The Series publishes research monographs, professional books, handbooks, edited volumes and textbooks with worldwide distribution to engineers, researchers, educators, professionals and libraries. Topics of interested include but are not limited to: – Structural integrity – Structural durability – Degradation and conservation of materials and structures – Dynamic and seismic structural analysis – Fatigue and fracture of materials and structures – Risk analysis and safety of materials and structural mechanics – Fracture Mechanics – Damage mechanics – Analytical and numerical simulation of materials and structures – Computational mechanics – Structural design methodology – Experimental methods applied to structural integrity – Multiaxial fatigue and complex loading effects of materials and structures – Fatigue corrosion analysis – Scale effects in the fatigue analysis of materials and structures – Fatigue structural integrity – Structural integrity in railway and highway systems – Sustainable structural design – Structural loads characterization – Structural health monitoring – Adhesives connections integrity – Rock and soil structural integrity Springer and the Series Editors welcome book ideas from authors. Potential authors who wish to submit a book proposal should contact Dr. Mayra Castro, Senior Editor, Springer (Heidelberg), e-mail: [email protected] More information about this series at http://www.springer.com/series/15775 Zengtao Chen Abdolhamid Akbarzadeh (cid:129) Advanced Thermal Stress Analysis of Smart Materials and Structures 123 Zengtao Chen AbdolhamidAkbarzadeh Department ofMechanical Engineering Department ofBioresource Engineering University of Alberta McGill University Edmonton, Canada Island of Montreal,QC,Canada Department ofMechanical Engineering McGill University Montreal,QC, Canada ISSN 2522-560X ISSN 2522-5618 (electronic) Structural Integrity ISBN978-3-030-25200-7 ISBN978-3-030-25201-4 (eBook) https://doi.org/10.1007/978-3-030-25201-4 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Advanced smart materials and structures are under rapid development to meet engineeringchallengesformultifunctionality,highreliability,andhighefficiencyin modern technology. Advanced manufacturing technology calls for high-energy, non-contact, laser-forming materials in a sophisticated spatial and temporal envi- ronment. Thermal stress analysis of advanced materials offers a viable tool for optimized design of advanced, multifunctional devices and for accurate modelling of advanced manufacturing processes. In classical thermal analysis, thermal stress is caused by the constrained defor- mation when a temperature variation occurs in an elastic body. How the material reaches the final temperature from the initial temperature will not affect the cal- culation of the steady-state or quasi-static thermal stresses. Classical Fourier heat conduction theory is widely used in the thermal stress analysis leading to perfect and trustworthy results. In transient and high-temperature gradient cases, when materialsexperiencesuddenchangesintemperaturewithinanextremelyshorttime, the reaction to this ultrafast, temporal temperature changes or heat flux would be expectedtohaveatimedelaysinceheatpropagationtakestimetooccur.Thisdelay might not be felt for most metallic materials as relaxation time of metals is in the rangeof10–8–10–14s,opposedtosoftandorganicmaterialswitharelaxationtime between1 sand10s,wherethedelayisnotnegligibleandthesubsequentthermal wave propagation is evident. Non-Fourier, time-related heat conduction models havebeenproposedtocompensatetheeffectofthisdelayinaheattransferprocess. Anaturaloutcomeofthenon-Fourierheatconductionmodelsisthewave-likeheat conductionequation,whereathermalwaveisrequiredtospreadtheheat.Thermal stress analysis in advanced materials based on the non-Fourier heat conduction theories has become a popular topic in the past decades. The authors of this book are among the researchers who initiated and continued working on promoting the research in the area of thermal stresses in advanced smart materials. Although the literature in this area is booming in recent years, a single-volume monograph summarizing the recent progress in implementing non-Fourier heat conduction theoriestodealwiththemultiphysicalbehaviourofsmartmaterialsandstructuresis still missing in the literature. v vi Preface This monograph is a collection of the research on advanced thermal stress analysis of advanced and smart materials and structures mainly written by the authorsofthisbook,andtheirstudentsandcolleagues.Thisbookisorganizedinto seven chapters. Chapter 1 provides a brief introduction to the non-Fourier heat conduction theories, including the Cattaneo–Vernotte (C–V), dual-phase-lag (DPL), three-phase-lag (TPL) theory, fractional phase-lag, and non-local heat conduction theories. Chapter 2 introduces the fundamental of thermal wave char- acteristics by reviewing different methods for solving non-Fourier heat conduction problems in representative homogenous and heterogeneous advanced materials. Chapter 3 provides the fundamentals of smart materials and structures, including the background, application, and governing equations. In particular, functionally graded smart structures are introduced as they represent the recent development in the industry; a series of uncoupled thermal stress analyses on one-dimensional smart structures are also presented. Chapter 4 presents coupled thermal stress analyses in one-dimensional, homogenous and heterogeneous, smart piezoelectric structures considering alternative coupled thermopiezoelectric theories. Chapter 5 introduces a generalized method to deal with plane crack problems in smart materials and structures based on classical Fourier heat conduction. Thermal frac- tureanalysisofcrackedstructuresbasedonnon-Fourierheatconductiontheoriesis presented in Chap. 6. Finally, Chap. 7 lists a few perspectives on the future developments in non-Fourier heat conduction and thermal stress analysis. We sincerely thank our students, colleagues, and friends for their contributions in preparation of this book. We are indebted to our families for their sacrifice, patience, and constant support during the composition of this book. Edmonton, Canada Zengtao Chen Montreal, Canada Abdolhamid Akbarzadeh April 2019 Contents 1 Heat Conduction and Moisture Diffusion Theories . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Heat Conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Fourier Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Non-Fourier Heat Conduction. . . . . . . . . . . . . . . . . . . . . 7 1.3 Moisture Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Fickian Moisture Diffusion . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2 Non-Fickian Moisture Diffusion . . . . . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Basic Problems of Non-Fourier Heat Conduction. . . . . . . . . . . . . . . 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Laplace Transform and Laplace Inversion . . . . . . . . . . . . . . . . . . 23 2.2.1 Fast Laplace Inverse Transform . . . . . . . . . . . . . . . . . . . 24 2.2.2 Reimann Sum Approximation. . . . . . . . . . . . . . . . . . . . . 25 2.2.3 Laplace Inversion by Jacobi Polynomial . . . . . . . . . . . . . 25 2.3 Non-Fourier Heat Conduction in a Semi-infinite Strip. . . . . . . . . . 26 2.4 Nonlocal Phase-Lag Heat Conduction in a Finite Strip . . . . . . . . . 31 2.4.1 Molecular Dynamics to Determine Correlating Nonlocal Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Three-Phase-Lag Heat Conduction in 1D Strips, Cylinders, and Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 Effect of Bonding Imperfection on Thermal Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5.2 Effect of Material Heterogeneity on Thermal Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.5.3 Thermal Response of a Lightweight Sandwich Circular Panel with a Porous Core. . . . . . . . . . . . . . . . . . . . . . . . 50 2.6 Dual-Phase-Lag Heat Conduction in Multi-dimensional Media . . . 53 vii viii Contents 2.6.1 DPL Heat Conduction in Multi-dimensional Cylindrical Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.6.2 DPL Heat Conduction in Multi-dimensional Spherical Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3 Multiphysics of Smart Materials and Structures. . . . . . . . . . . . . . . . 65 3.1 Smart Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1.1 Piezoelectric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.2 Magnetoelectroelastic Materials. . . . . . . . . . . . . . . . . . . . 69 3.1.3 Advanced Smart Materials . . . . . . . . . . . . . . . . . . . . . . . 73 3.2 Thermal Stress Analysis in Homogenous Smart Materials. . . . . . . 74 3.2.1 Solution for the a Thermomagnetoelastic FGM Cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.2 Solution for Thermo-Magnetoelectroelastic Homogeneous Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.2.3 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3 Thermal Stress Analysis of Heterogeneous Smart Materials. . . . . . 90 3.3.1 Solution Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.4 Effect of Hygrothermal Excitation on One-Dimensional Smart Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4.1 Solution Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.4.2 MEE Hollow Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.3 MEE Solid Cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.4.4 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.5 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4 Coupled Thermal Stresses in Advanced Smart Materials . . . . . . . . . 119 4.1 Functionally Graded Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.2 Hyperbolic Coupled Thermopiezoelectricity in One-Dimensional Rod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2.2 Homogeneous Rod Problem . . . . . . . . . . . . . . . . . . . . . . 122 4.2.3 Solution Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.4 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.3 Hyperbolic Coupled Thermopiezoelectricity in Cylindrical Smart Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.3.2 Hollow Cylinder Problem. . . . . . . . . . . . . . . . . . . . . . . . 135 4.3.3 Solution Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3.4 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.4 Coupled Thermopiezoelectricity in One-Dimensional Functionally Graded Smart Materials. . . . . . . . . . . . . . . . . . . . . . 146 Contents ix 4.4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.4.2 The Functionally Graded Rod Problem . . . . . . . . . . . . . . 147 4.4.3 Solution Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.4.4 Results and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.4.5 Introduction of Dual Phase Lag Models . . . . . . . . . . . . . 161 4.4.6 Results of Dual Phase Lag Model Analysis . . . . . . . . . . . 163 4.5 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5 Thermal Fracture of Advanced Materials Based on Fourier Heat Conduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.2 Extended Displacement Discontinuity Method and Fundamental Solutions for Thermoelastic Crack Problems . . . . . . . . . . . . . . . . 171 5.2.1 Fundamental Solutions for Unit Point Loading on a Penny-Shaped Interface Crack. . . . . . . . . . . . . . . . . 174 5.2.2 Boundary Integral-Differential Equations for Interfacial Cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.2.3 Stress Intensity Factor and Energy Release Rate . . . . . . . 194 5.3 Interface Crack Problems in Thermopiezoelectric Materials. . . . . . 197 5.3.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.3.2 Fundamental Solutions for Unit-Point Extended Displacement Discontinuities . . . . . . . . . . . . . . . . . . . . . 200 5.3.3 Boundary Integral-Differential Equations for an Interfacial Crack in Piezothermoelastic Materials . . . . . . . 204 5.3.4 Hyper-Singular Integral-Differential Equations. . . . . . . . . 206 5.3.5 Solution Method of the Integral-Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 5.3.6 Extended Stress Intensity Factors . . . . . . . . . . . . . . . . . . 219 5.4 Fundamental Solutions for Magnetoelectrothermoelastic Bi-Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5.5 Fundamental Solutions for Interface Crack Problems in Quasi-Crystalline Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 5.5.1 Fundamental Solutions for Unit-Point EDDs . . . . . . . . . . 228 5.6 Application of General Solution in the Problem of an Interface Crack of Arbitrary Shape . . . . . . . . . . . . . . . . . . . 234 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236