Advances in Simulation Volume 3 Series Editors: Paul A. Luker Bernd Schmidt Dietmar P.F. Moller Editor Advanced Simulation in Biomedicine With 74 Illustrations Springer Science+Business Media, LLC Dietmar P.F. MolIer Driigerwerk AG D-2400 Liibeck 1 West Germany Library of Congress Cataloging-in-Publication Data Advanced simulation in biomedicine / Dietmar P.F. Miiller, editor. p. cm.-(Advances in simulation ; v. 3) Includes bibliographical references. ISBN 978-0-387-97184-1 1. Medicine-Computer simulation. 2. Medical sciences-Computer simulation. 3. Biological models-Computer simulation. 1. Miiller, Dietmar. II. Series. [DNLM: 1. Computer Simulation. 2. Medicine. 3. Models, Biological. W 26.5 A244) R859.7.C65A39 1989 610'.1' 13--dc20 DNLMlDLC for Library of Congress 89-26082 Printed on acid-free paper. © 1990 Springer Science+Business Media New York Originally published by Springer-Verlag New York in 1990 Softcover reprint ofthe hardcover 1s t edition 1990 AII rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed in forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book is believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Camera-ready text prepared by the contributors. 9 8 7 6 5 4 3 2 1 ISBN 978-0-387-97184-1 ISBN 978-1-4419-8614-6 (eBook) DOI 10.1007/978-1-4419-8614-6 Preface This book presents a collection of invited contributions, each reflecting an area of biomedicine in which simulation techniques have been successfully applied. Thus, it provides a state-of-the-art survey of simulation techniques in a variety of biomedical applications. Chapter one presents the conceptual framework for advanced simulations such as parallel processing in biological systems. Chapter two focuses on structured biological modeling based on the bond graph method. This is followed by an up-to-date account of advanced simulation of a variety of sophisticated biomedical processes. The authors provide many insights into how computer simulation techniques and tools can be applied to research problems in biomedicine. The idea for this book arose out of the daily work by experts in their field and reflects developing areas. Therefore, I think the material is timely and hope that the work described will be an encouragement for others. It is the objective of this book to present advanced simulation techniques in biomedicine and outline current research, as well as to point out open problems, in this dynamic field. Finally, I wish to express my thanks to those colleagues who have made this book possible with their contributions. Dietmar P.F. Moller Mainz/Liibeck, July 1989 Contents Preface ................................................................................................................................. v Contributors ..................................................................................................................... xi Parallel Processing in Biological Systems E.J.H. Kerckhoffs and G.c. Vansteenkiste .................................................................... 1 Multicomputers in simulation .......................................................................................... 1 Evolution in simulation oriented digital computers ...................................................... 1 Classification of multicomputers ..................................................................................... 2 Parallel simulation. ............................................................................................................ 4 Simulation of biological systems and its need for parallel processing. .......................................................................................................................... 5 Simulation example on the ADlO multicomputer ......................................................... 6 Concluding notes ............................................................................................................... 8 References .......................................................................................................................... 8 An Elementary Bond Graph Approach to Structured Biological Modeling J. Lefevre .......................................................................................................................... 11 The need for unified graphical structured modeling .................................................. ll General lines of the presentation .................................................................................. 12 Bond graph representation of energetical systems .................................................... 13 Hypergraph representation of energeticallumped systems ....................................... 14 The set EP of elementary parts or nodes ..................................................................... 14 The two elementary connection branches .................................................................... 17 Bond graphs: A representation of a subclass of energetical hypergraphs ................ 19 The chemical energy domain ........................................................................................ .20 Chemical EBG variables and energy storage elements .............................................. 20 Chemical reaction and dissipation by R-elements based on mass action ................ 22 The pseudo bond graph approach to reaction kinetics and compartments ............. 24 Representation of kinetic and potential energies by dynamical bond graphs ......... 24 Algorithmic representation of idealized physical models by bond graphs ............... 25 The EBG representation of an electrical IPM ............................................................ 25 Representation algorithms for other systems .............................................................. 27 Coupling of bond graphs and informational block diagrams ..................................... 28 Representation of information transfer in BG's by active bonds. ............................. 29 Coupling of active bonds to BG nodes .........................................................................2 9 Formulation algorithms: Automatic obtention of simulation routines ..................... 29 The causal stroke: A graphical marker of causality .................................................... 30 Sequential assignment of causality for elements and junctions ................................. 32 Algorithmic derivation of the procedural simulation routine ....................................3 4 Conclusion ........................................................................................................................ 37 References. .......................................................................................................................3 9 Simulation of Typical Physiological Systems T.G. Coleman and W.J. Gay. ........................................................................................ .41 Recent advances in digital computing. .......................................................................... 41 Success may cause trouble .............................................................................................. 43 Other issues ..................................................................................................................... .45 A typical physiological model. ........................................................................................ 47 Non-linear relationships ................................................................................................ .51 Algebraic relationships. .................................................................................................. 56 Integral relationships ....................................................................................................... 61 Summary. ..........................................................................................................................6 7 References. .......................................................................................................................6 8 Parameter Estimation: An Advanced Simulation Tool in Biomedicine D.P.F. Moller. .................................................................................................................. 71 Introduction ...................................................................................................................... 71 Model building of the renovascular system .................................................................. 74 Parameter estimation. ..................................................................................................... 76 Identification task ............................................................................................................ 78 Identification results. ....................................................................................................... 79 References ........................................................................................................................8 2 A Review of Respiratory System Applications of Computer Simulation and Modelling Techniques D.J. Murray-Smith. ..........................................................................................................8 3 Introduction. ..................................................................................................................... 83 Physiological background ............................................................................................... 84 The conceptual basis of modelling the system ............................................................. 85 Modelling and simulation as research tools .................................................................8 7 Simulation for teaching ...................................................................................................9 1 Simulation in respiratory gas exchange teaching ......................................................... 92 The MacPuf model. .........................................................................................................9 6 A computer simulation for training in anaesthesia ..................................................... 98 V111 Estimation techniques involving system identification methods ............................. 100 Applications involving gas exchange models ..............................................................1 00 Lung mechanics models ................................................................................................ 105 Models for on-line control. ........................................................................................... 106 Discussion ....................................................................................................................... 107 References. ..................................................................................................................... 109 Computer Simulation in Cancer Research W. Diichting. .................................................................................................................. 117 The cancer problem ...................................................................................................... 117 Biological observations of cell growth ........................................................................ 118 Growth of normal cells ................................................................................................. 118 Growth of tumor cells ................................................................................................... 119 Possibilities of cancer treatment. ................................................................................. 120 Statement of the modeling problem ............................................................................ 121 Overview of previous work ........................................................................................... 123 Model design .................................................................................................................. 127 Fundamental components ............................................................................................ 127 Limitations ...................................................................................................................... 128 Computer-implementation of the model. ................................................................... 128 Simulation results and discussions .............................................................................. 130 Formation of capillaries. ............................................................................................... 130 Spread of tumor cells in the cortex. ............................................................................ 133 Tumor angiogenesis effect. ........................................................................................... 136 Outlook. .......................................................................................................................... 137 References ...................................................................................................................... 138 Mathematical Simulation of the Human Thermal System J. Werner ........................................................................................................................ 141 Introduction. ................................................................................................................... 121 Distributed parameter model: Radial dependencies ................................................ 144 Distributed parameter model: Three dimensional dependencies ........................... 152 Data base ........................................................................................................................ 153 Physics and mathematics of the passive system ......................................................... 155 Metabolic heat production ........................................................................................... 155 Convective heat transport. ............................................................................................ 155 Controller equations ..................................................................................................... 157 Numerical solution ........................................................................................................ 158 Results of simulation. .................................................................................................... 159 Distribution of temperatures and profiles in neutral environment.. ...................... 159 Control strategy. ............................................................................................................ 163 Temperature profiles in the cold and in the warmth ................................................ 165 References ...................................................................................................................... 168 ix Large-Scale Multiple Model for the Simulation of Anesthesia R.O.Y. Tham, F.J. Sasse, and V.C. Rideout. ............................................................. 173 Introduction .................................................................................................................... 173 Concept of the large-scale multiple modeL ............................................................. 174 Model design .................................................................................................................. 175 Composition of the anesthesia model.. ....................................................................... 175 Hemodynamic submodel. ............................................................................................. 177 Compartmental transport model.. ............................................................................... 181 Baroreceptor control submodel. .................................................................................. 182 Pharmacodynamic submodel. ...................................................................................... 187 Simulation results .......................................................................................................... 188 Conclusions .................................................................................................................... 193 References ...................................................................................................................... 194 Index ................................................................................................................................ 197 x Contributors Thomas G. Coleman and David J. Murray-Smith William J. Gay Department of Electronics and Department of Physiology Electrical Engineering and Biophysics University of Glasgow University of Mississippi Glasgow G12 800 Medical Center United Kingdom Jackson, MS 39216-4505 USA R.O.Y Tham, FJ. Sasse, and v.c. Rideout Werner Dtichting Department of Electrical Fachbereich Elektrotechnik and Computer Engineering Universitat Siegen and Department of Holderlinstrasse 3 Anesthesiology D-5900 Siegen University of Wisconsin West Germany Madison, WI 53706 USA EJ .H. Kerckhoffs Faculty of Mathematics G.C. Vansteenkiste and Informatics Department of Applied Delft University of Technology Mathematics Julianalaan 132 and Biometrics 2628 BL Delft University of Ghent The Netherlands Coupure Links 653 9000 Ghent J. Lefevre Belgium Department of Automatics and Physiology Jtirgen Werner University of Louvain Ruhr-Universitat Brussels Institut fUr Physiologie Belgium Abteilung Biokybernetik, MA 4/59 D-4630 Bochum 1 Dietmar P.F. Moller West Germany Physiologisches Institut U niversitat Mainz Saarstrasse 21 D-6500 Mainz West Germany PARALLEL PROCESSING IN BIOLOGICAL SYSTEMS E.J.H. KERCKHOFFS Delft University of Technology Faculty of Mathematics and Informatics Julianalaan 132, 2628 BL Delft, The Netherlands G.C. VANSTEENKISTE University of Ghent Dept. of Applied Mathematics and Biometrics Coupure Links 653, 9000 Ghent, Belgium Abstract Simulation of biological systems frequently results in models, that are very compli cated and their solution on conventional computers may therefore be time-consuming. There is a growing interest to use computers with internal parallelism and/or pipe lining in this field. In this article we consider some aspects of the parallel simu lation of biological systems. A general consideration on multicomputers in simulation is presented. Simulation of biological systems and its needs for advanced computer tools is analyzed. Finally, we give an example of biological systems simulation on the multiprocessor ADI0. The emphasis is on models characterized by ordinary differen tial equations. 1. MULTICOMPUTERS IN SIMULATION 1.1. SYQ1~!iQ~_Qf_~i~~12!iQ~:Qri~~!~~_~i9i!21_~Q~~~!~r~ The simulation of (complex) continuous systems has been particularly influential in the evolution of special-purpose computer systems to attain high computing speeds and performance. In this respect two major computer architecture innovations have permitted the circumventing of the von Neumann bottleneck in order to attain high speeds: parallelism and pipelining. The implementation of these techniques has re sulted in some distinct families of high speed digital computers including supercom puters, peri pheral array processors and multi processors [HOCK81] , [KARP84] , [KARP87] , [SPRI82] . The first supercomputer to become operational (in 1975) was the ILLIAC-IV, which consisted of an array of 64 processing elements, each containing an arithmetic/logic unit and local memory. During the middle 1970's the focus in the development of super computers shifted away from arrays of processing elements towards pipelining. Two major pipeline-oriented supercomputers, known as vector processors, of the 1970's were the Control Data Corporation STAR-I00 and the Texas Instruments ASC. The first pipeline oriented supercomputer to win wide-spread acceptance was the CRAY-l, developed by Cray Research Incorporated and first installed in 1976. This machine was the trend setter for many other supercomputers with a similar approach to high-speed computations, including the presently well-known products of Cray Research Incorporated and Control Data Corporation in the USA, and Hitachi, Fujitsu and Nippon Electric Corporation in Japan. In the late 1970's a new class of pipeline-oriented computing devices began to