ebook img

Advanced Problems in Mathematics: Preparing for University PDF

189 Pages·2016·1.932 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Problems in Mathematics: Preparing for University

S S tephen ikloS Advanced Problems in Mathematics Preparing for University ADVANCED PROBLEMS IN MATHEMATICS Advanced Problems in Mathematics: Preparing for University Stephen Siklos http://www.openbookpublishers.com ⃝c 2016StephenSiklos. ThisworkislicensedunderaCreativeCommonsAttribution4.0Internationallicense(CCBY4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercialuseoftheworkprovidingattributionismadetotheauthor(butnotinanywaythatsuggests thattheyendorseyouoryouruseofthework). Attributionshouldincludethefollowinginformation: StephenSiklos,AdvancedProblemsinMathematics: PreparingforUniversity. Cambridge,UK:OpenBook Publishers,2015. http://dx.doi.org/10.11647/OBP.0075 FurtherdetailsaboutCCBYlicensesareavailableathttp://creativecommons.org/licenses/by/4.0/ Digitalmaterialandresourcesassociatedwiththisvolumeareavailableat http://www.openbookpublishers.com/isbn/9781783741427 STEPquestionsreproducedbykindpermissionofCambridgeAssessmentGroupArchives. ThisisthefirstvolumeoftheOBPSeriesinMathematics: ISSN2397-1126(Print) ISSN2397-1134(Online) ISBNPaperback: 9781783741427 ISBNDigital(PDF):9781783741441 ISBNDigitalebook(epub): 9781783741458 ISBNDigitalebook(mobi): 9781783741465 DOI:10.11647/OBP.0075 Cover image: Paternoster Vents (2012). Photograph ⃝c Diane Potter. Creative Commons Attribution- NonCommercial-NoDerivsCCBY-NC-ND AllpaperusedbyOpenBookPublishersisSFI(SustainableForestryInitiative)andPEFC(Programme fortheEndorsementofForestCertificationSchemes)Certified. PrintedintheUnitedKingdomandUnitedStatesby LightningSourceforOpenBookPublishers Contents Aboutthisbook ix STEP 1 WorkedProblems 11 Workedproblem1 11 Workedproblem2 15 Problems 19 P1 Anintegerequation 19 P2 Partitionsof10and20 21 P3 Mathematicaldeduction 23 P4 Divisibility 25 P5 Themodulusfunction 27 P6 TheregularReuleauxheptagon 29 P7 Chainofequations 31 P8 Trig. equations 33 P9 Integrationbysubstitution 35 P10 Trueorfalse 37 P11 Egyptianfractions 39 P12 Maximisingwithconstraints 41 P13 Binomialexpansion 43 P14 Sketchingsubsetsoftheplane 45 P15 Moresketchingsubsetsoftheplane 47 P16 Non-linearsimultaneousequations 49 P17 Inequalities 51 P18 Inequalitiesfromcubics 53 P19 Logarithms 55 P20 Cosmologicalmodels 57 P21 Meltingsnowballs 59 P22 Gregory’sseries 61 P23 Intersectionofellipses 63 P24 Sketchingxm(1(cid:0)x)n 65 vi AdvancedProblemsinMathematics P25 Inequalitiesbyareaestimates 67 P26 Simultaneousintegralequations 69 P27 Relationbetweencoefficientsofquarticforrealroots 71 P28 Fermatnumbers 73 P29 Telescopingseries 75 P30 Integersolutionsofcubics 77 P31 Theharmonicseries 79 P32 Integrationbysubstitution 81 P33 Morecurvesketching 83 P34 Trigsum 85 P35 Rootsofacubicequation 88 P36 Rootcounting 90 P37 Irrationalityofe 92 P38 Discontinuousintegrands 94 P39 Adifficultintegral 96 P40 Estimatingthevalueofanintegral 98 P41 Integratingthemodulusfunction 100 P42 Geometry 102 P43 Thetsubstitution 104 P44 Adifferential-differenceequation 106 P45 Lagrange’sidentity 108 P46 Bernoullipolynomials 110 P47 Vectorgeometry 112 P48 Solvingaquartic 114 P49 Areasandvolumes 116 P50 Morecurvesketching 118 P51 Sphericalloaf 120 P52 Snowploughing 122 P53 Tortoiseandhare 124 P54 Howdidthechickencrosstheroad? 126 P55 Hank’sgoldmine 128 P56 Achocolateorange 130 P57 Lorryonbend 132 P58 Fielding 134 P59 Equilibriumofrodofnon-uniformdensity 136 P60 Newton’scradle 138 P61 Kinematicsofrotatingtarget 140 P62 Particleonwedge 142 P63 Sphereonstep 144 StephenSiklos vii P64 Elasticbandoncylinder 146 P65 Aknock-outtournament 148 P66 Harrythecalculatinghorse 150 P67 PINguessing 152 P68 Breakingplates 154 P69 Lottery 156 P70 Bodiesinthefridge 158 P71 Choosingkeys 160 P72 Commutingbytrain 162 P73 Collectingvoles 164 P74 Breakingastick 166 P75 Randomquadratics 168 Syllabus 170 About this book Thisbookhastwoaims. (cid:15) Thegeneralaimistohelpbridgethegapbetweenschoolanduniversitymathematics. Youmightwonderwhysuchagapexists. Thereasonisthatmathematicsistaughtatschoolfor variouspurposes: toimprovenumeracy;tohoneproblem-solvingskills;asaserviceforstudents goingontostudysubjectsthatrequiresomemathematicalskills(economics,biology,engineering, chemistry—thelistislong);and,finally,toprovideafoundationforthesmallnumberofstudents who will continue to a specialist mathematics degree. It is a very rare school that can achieve all this, and almost inevitably the course is least successful for its smallest constituency, the real mathematicians. (cid:15) ThemorespecificaimistohelpyoutoprepareforSTEPorotherexaminationsrequiredforuni- versityentranceinmathematics. TofindoutmoreaboutSTEP,readthenextsection. Itusedtobesaidthatmathematicsandcricketwerenotspectatorsports; andthisisstilltrueofmath- ematics. Toprogressasamathematician,youhavetostrengthenyourmathematicalmuscles. Itisnot enoughjusttoreadbooksorattendlectures. Youhavetoworkonproblemsyourself. Onewayofachievingthefirstoftheaimssetoutaboveistoworkonthesecond,andthatishowthis bookisstructured. Itconsistsalmostentirelyofproblemsforyoutoworkon. The problems are all based on STEP questions. I chose the questions either because they are ‘nice’ — in the sense that you should get a lot of pleasure from tackling them (I did), or because I felt I had somethinginterestingtosayaboutthem. The first two problems (the ‘worked problems’) are in a stream of consciousness format. They are in- tended to give you an idea how a trained mathematician would think when tackling them. This ap- proachismuchtoolong-windedtosustainfortheremainderofthebook,butitshouldhelpyoutosee whatsortofquestionsyoushouldbeaskingyourselfasyouworkonthelaterproblems. Each subsequent problem occupies two pages. On the first page is the STEP question, followed by a comment.Thecommentsmaycontainhints,theymaydirectyourattentiontokeypoints,andtheymay includemoregeneraldiscussions. Onthenextpageisasolution;youhavetoturnover,sothatyoureye cannotaccidentallyfallonakeylineofworking. Thesolutionsgiveenoughworkingforyoutobeable toreadthemthroughandpickupatleastthegistofthemethod;theymaynotgiveallthedetailsofthe calculations. Foreachproblem, thegivensolutionisofcoursejustonewayofproducingtherequired result: theremaybemanyotherequallygoodorbetterways. Finally,ifthereisspaceonthepageafter the solution (which is sometimes not the case, especially if diagrams have to be fitted in), there is a postmortem. Thepostmortemsmayindicatewhataspectsofthesolutionyoushouldbereviewingand theymaytellyouabouttheideasbehindtheproblems. Ihopethatyouwillusethecommentsandsolutionsasspringboardsratherthanfeatherbeds. Youwill onlyreallybenefitfromthisbookifyouhaveagoodgoateachproblembeforelookingatthecomment and certainly before looking at the solution. The problems are chosen so that there is something for youtolearnfromeachone,andthiswillbelosttoyouforeverifyousimplyreadthesolutionwithout thinkingabouttheproblemonyourown.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.