ebook img

Advanced Problems in Mathematics For Jee (Main & Advanced) (Black book maths) PDF

393 Pages·2016·6.457 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Problems in Mathematics For Jee (Main & Advanced) (Black book maths)

AAAdddvvvaaannnccceeeddd PPPrrrooobbbllleeemmmsss iiinnn MMMAAATTTHHHEEEMMMAAATTTIIICCCSSS fffooorrr JJJEEEEEE (((MMMAAAIIINNN &&& AAADDDVVVAAANNNCCCEEEDDD))) by : Vikas Gupta Pankaj Joshi Director Director Vibrant Academy India(P) Ltd. Vibrant Academy India(P) Ltd. KOTA (Rajasthan) KOTA (Rajasthan) [AN ISO 9001-2008 CERTIFIED ORGANIZATION] CONTENTS CALCULUS 1. Function 3 – 29 2. Limit 30 – 44 3. Continuity, Differentiability and Differentiation 45 – 74 4. Application of Derivatives 75 – 97 5. Indefinite and Definite Integration 98 – 127 6. Area Under Curves 128 – 134 7. Differential Equations 135 – 144 ALGEBRA 8. Quadratic Equations 147 – 176 9. Sequence and Series 177 – 197 10. Determinants 198 – 206 11. Complex Numbers 207 – 216 12. Matrices 217 – 224 13. Permutation and Combinations 225 – 233 14. Binomial Theorem 234 – 242 15. Probability 243 – 251 16. Logarithms 252 – 264 CO-ORDINATE GEOMETRY 17. Straight Lines 267 – 280 18. Circle 281 – 295 19. Parabola 296 – 302 20. Ellipse 303 – 307 21. Hyperbola 308 – 312 TRIGONOMETRY 22. Compound Angles 315 – 334 23. Trigonometric Equations 335 – 343 24. Solution of Triangles 344 – 359 25. Inverse Trigonometric Functions 360 – 370 VECTOR & 3DIMENSIONAL GEOMETRY 26. Vector & 3Dimensional Geometry 373 – 389 Function 3 1 F UNCTION Exercise-1 : Single Choice Problems 1. Range of the function f(x)(cid:61)log (2(cid:45)log (16sin2 x (cid:43)1)) is : 2 2 (a) [0,1] (b) ((cid:45)(cid:165),1] (c) [(cid:45)1,1] (d) ((cid:45)(cid:165),(cid:165)) 2. The value of a and b for which |e|x(cid:45)b| (cid:45)a|(cid:61)2, has four distinct solutions, are : (a) a(cid:206)((cid:45)3,(cid:165)), b(cid:61)0 (b) a(cid:206)(2,(cid:165)), b(cid:61)0 (c) a(cid:206)(3,(cid:165)), b(cid:206)R (d) a(cid:206)(2,(cid:165)), b(cid:61)a 3. The range of the function : 1 f(x)(cid:61)tan(cid:45)1 x (cid:43) sin(cid:45)1 x 2 (a) ((cid:45)(cid:112) 2,(cid:112) 2) (b) [(cid:45)(cid:112) 2,(cid:112) 2](cid:45){0} (c) [(cid:45)(cid:112) 2,(cid:112) 2] (d) ((cid:45)3(cid:112) 4,3(cid:112) 4) 4. Find the number of real ordered pair(s) (x,y) for which : 16x2(cid:43)y (cid:43)16x(cid:43)y2 (cid:61)1 (a) 0 (b) 1 (c) 2 (d) 3 |x| (cid:230)1(cid:246) 5. The complete range of values of ‘a’ such that (cid:231) (cid:247) (cid:61)x2 (cid:45)a is satisfied for maximum number (cid:232)2(cid:248) of values of x is : (a) ((cid:45)(cid:165),(cid:45)1) (b) ((cid:45)(cid:165),(cid:165)) (c) ((cid:45)1,1) (d) ((cid:45)1,(cid:165)) 6. For a real number x, let [x] denotes the greatest integer less than or equal to x. Let f:R(cid:174) R be defined by f(x)(cid:61)2x (cid:43)[x](cid:43)sinxcosx. Then f is : (a) One-one but not onto (b) Onto but not one-one (c) Both one-one and onto (d) Neither one-one nor onto (cid:230)7(cid:45)5(x2 (cid:43)3)(cid:246) 7. The maximum value of sec(cid:45)1(cid:231) (cid:247) is : (cid:232)(cid:231) 2(x2 (cid:43)2) (cid:248)(cid:247) 5(cid:112) 5(cid:112) 7(cid:112) 2(cid:112) (a) (b) (c) (d) 6 12 12 3 4 Advanced Problems in Mathematics for JEE 8. Number of ordered pair (a,b) from the set A(cid:61) {1, 2, 3, 4, 5} so that the function x3 a f(x)(cid:61) (cid:43) x2 (cid:43)bx (cid:43)10 is an injective mapping (cid:34)x(cid:206)R : 3 2 (a) 13 (b) 14 (c) 15 (d) 16 9. Let A be the greatest value of the function f(x)(cid:61)log [x], (where [(cid:215)] denotes greatest integer x function) and B be the least value of the function g(x)(cid:61)|sinx|(cid:43)|cosx|, then : (a) A(cid:62)B (b) A(cid:60)B (c) A(cid:61)B (d) 2A(cid:43)B (cid:61)4 10. Let A(cid:61)[a,(cid:165)) denotes domain, then f:[a,(cid:165))(cid:174) B, f(x)(cid:61)2x3 (cid:45)3x2 (cid:43)6 will have an inverse for the smallest real value of a, if : (a) a(cid:61)1,B (cid:61)[5,(cid:165)) (b) a(cid:61)2,B (cid:61)[10,(cid:165)) (c) a(cid:61)0,B (cid:61)[6,(cid:165)) (d) a(cid:61)(cid:45)1,B (cid:61)[1,(cid:165)) 11. Solution of the inequation {x}({x}(cid:45)1)({x}(cid:43)2)(cid:179)0 (where {(cid:215)} denotes fractional part function) is : (a) x(cid:206)((cid:45)2,1) (b) x(cid:206)I (I denote set of integers) (c) x(cid:206)[0,1) (d) x(cid:206)[(cid:45)2,0) 12. Let f(x),g(x) be two real valued functions then the function h(x)(cid:61)2max{f(x)(cid:45)g(x),0} is equal to : (a) f(x)(cid:45)g(x)(cid:45)|g(x)(cid:45) f(x)| (b) f(x)(cid:43) g(x)(cid:45)|g(x)(cid:45) f(x)| (c) f(x)(cid:45)g(x)(cid:43)|g(x)(cid:45) f(x)| (d) f(x)(cid:43) g(x)(cid:43)|g(x)(cid:45) f(x)| 13. Let R (cid:61) {(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)} be a relation on the set A(cid:61) {1, 2, 3, 4}. The relation R is : (a) a function (b) reflexive (c) not symmetric (d) transitive (cid:230) 1 (cid:246) K(cid:112) 14. The true set of values of ‘K’ for which sin(cid:45)1(cid:231) (cid:247)(cid:61) may have a solution is : (cid:232)1(cid:43)sin2 x(cid:248) 6 (cid:233)1 1(cid:249) (cid:233)1 1(cid:249) (a) , (b) [1,3] (c) , (d) [2,4] (cid:234) (cid:250) (cid:234) (cid:250) (cid:235)4 2(cid:251) (cid:235)6 2(cid:251) 15. A real valued function f(x) satisfies the functional equation f(x (cid:45) y)(cid:61) f(x)f(y)(cid:45) f(a(cid:45)x)f(a(cid:43) y) where ‘a’ is a given constant and f(0)(cid:61)1, f(2a(cid:45)x) is equal to : (a) (cid:45)f(x) (b) f(x) (c) f(a)(cid:43) f(a(cid:45)x) (d) f((cid:45)x) 16. Let g:R(cid:174) R be given by g(x)(cid:61)3(cid:43)4x if gn(x)(cid:61)gogogo......og(x)n times. Then inverse of gn(x) is equal to : (a) (x (cid:43)1(cid:45)4n)(cid:215)4(cid:45)n (b) (x (cid:45)1(cid:43)4n)4(cid:45)n (c) (x (cid:43)1(cid:43)4n)4(cid:45)n (d) None of these x2 (cid:43)2x (cid:43)a 17. Let f:D(cid:174) R be defined as : f(x)(cid:61) where D and R denote the domain of f and x2 (cid:43)4x (cid:43)3a the set of all real numbers respectively. If f is surjective mapping, then the complete range of a is : (a) 0(cid:163)a(cid:163)1 (b) 0(cid:60)a(cid:163)1 (c) 0(cid:163)a(cid:60)1 (d) 0(cid:60)a(cid:60)1 Function 5 18. If f:((cid:45)(cid:165),2](cid:190)(cid:174)((cid:45)(cid:165),4], where f(x)(cid:61)x(4(cid:45)x), then f(cid:45)1(x) is given by : (a) 2(cid:45) 4(cid:45)x (b) 2(cid:43) 4(cid:45)x (c) (cid:45)2(cid:43) 4(cid:45)x (d) (cid:45)2(cid:45) 4(cid:45)x 19. If [5sinx](cid:43)[cosx](cid:43)6(cid:61)0, then range of f(x)(cid:61) 3cosx (cid:43)sinx corresponding to solution set of the given equation is : (where [(cid:215)] denotes greatest integer function) (cid:230) 3 3 (cid:43)2 (cid:246) (cid:230) 3 3 (cid:43)4 (cid:246) (a) [(cid:45)2,(cid:45)1) (b) (cid:231)(cid:45) ,(cid:45)1(cid:247) (c) [(cid:45)2,(cid:45) 3) (d) (cid:231)(cid:45) ,(cid:45)1(cid:247) (cid:231) (cid:247) (cid:231) (cid:247) 5 5 (cid:232) (cid:248) (cid:232) (cid:248) 20. If f:R(cid:174) R, f(x)(cid:61)ax (cid:43)cosx is an invertible function, then complete set of values of a is : (a) ((cid:45)2,(cid:45)1](cid:200)[1,2) (b) [(cid:45)1,1] (c) ((cid:45)(cid:165),(cid:45)1](cid:200)[1,(cid:165)) (d) ((cid:45)(cid:165),(cid:45)2](cid:200)[2,(cid:165)) (cid:233) x(cid:249) (cid:233) x(cid:249) (cid:233) x(cid:249) 21. The range of function f(x)(cid:61)[1(cid:43)sinx](cid:43) 2(cid:43)sin (cid:43) 3(cid:43)sin (cid:43)...(cid:43) n(cid:43)sin (cid:34)x(cid:206) (cid:234) (cid:250) (cid:234) (cid:250) (cid:234) (cid:250) (cid:235) 2(cid:251) (cid:235) 3(cid:251) (cid:235) n(cid:251) [0,(cid:112)], n(cid:206)N ([(cid:215)] denotes greatest integer function) is : (cid:236)(cid:239)n2 (cid:43)n(cid:45)2 n(n(cid:43)1)(cid:252)(cid:239) (cid:236)n(n(cid:43)1)(cid:252) (a) (cid:237) , (cid:253) (b) (cid:237) (cid:253) (cid:238)(cid:239) 2 2 (cid:254)(cid:239) (cid:238) 2 (cid:254) (cid:236)(cid:239)n(n(cid:43)1) n2 (cid:43)n(cid:43)2 n2 (cid:43)n(cid:43)4(cid:252)(cid:239) (cid:236)(cid:239)n(n(cid:43)1) n2 (cid:43)n(cid:43)2(cid:252)(cid:239) (c) (cid:237) , , (cid:253) (d) (cid:237) , (cid:253) (cid:238)(cid:239) 2 2 2 (cid:254)(cid:239) (cid:238)(cid:239) 2 2 (cid:254)(cid:239) x2 (cid:43)ax (cid:43)1 22. If f:R(cid:174) R, f(x)(cid:61) , then the complete set of values of ‘a’ such that f(x) is onto is : x2 (cid:43) x (cid:43)1 (a) ((cid:45)(cid:165),(cid:165)) (b) ((cid:45)(cid:165),0) (c) (0,(cid:165)) (d) not possible 23. If f(x) and g(x) are two functions such that f(x)(cid:61)[x](cid:43)[(cid:45)x] and g(x)(cid:61){x}(cid:34)x(cid:206)R and h(x)(cid:61) f(g(x)); then which of the following is incorrect ? ([(cid:215)] denotes greatest integer function and {·} denotes fractional part function) (a) f(x) and h(x) are identical functions (b) f(x)(cid:61)g(x) has no solution (c) f(x)(cid:43)h(x)(cid:62)0 has no solution (d) f(x)(cid:45)h(x) is a periodic function (cid:233) x (cid:249)(cid:233) 15(cid:249) 24. Number of elements in the range set of f(x)(cid:61) (cid:45) (cid:34)x(cid:206)(0,90); (where [(cid:215)] denotes (cid:234) (cid:250)(cid:234) (cid:250) (cid:235)15(cid:251)(cid:235) x (cid:251) greatest integer function) : (a) 5 (b) 6 (c) 7 (d) Infinite 25. The graph of function f(x) is shown below : O 1 Then the graph of g(x)(cid:61) is : f(|x|) 6 Advanced Problems in Mathematics for JEE (a) (b) (c) (d) 26. Which of the following function is homogeneous ? y x (a) f(x)(cid:61)xsin y (cid:43) ysinx (b) g(x)(cid:61)xex (cid:43) yey xy x (cid:45) ycosx (c) h(x)(cid:61) (d) (cid:102)(x)(cid:61) x (cid:43) y2 ysinx (cid:43) y (cid:233)2x (cid:43)3 ; x(cid:163)1 27. Let f(x)(cid:61) . If the range of f(x)(cid:61)R (set of real numbers) then number of (cid:235)(cid:234)a2x (cid:43)1 ; x(cid:62)1 integral value(s), which a may take : (a) 2 (b) 3 (c) 4 (d) 5 28. The maximum integral value of x in the domain of f(x)(cid:61)log (log (log (x (cid:45)5)) is : 10 13 4 (a) 5 (b) 7 (c) 8 (d) 9 (cid:230) 4 (cid:246) 29. Range of the function f(x)(cid:61)log (cid:231) (cid:247) is : 2(cid:231) (cid:247) (cid:232) x (cid:43)2 (cid:43) 2(cid:45)x(cid:248) (cid:233)1 (cid:249) (cid:233)1 (cid:249) (a) (0,(cid:165)) (b) ,1 (c) [1,2] (d) ,1 (cid:234) (cid:250) (cid:234) (cid:250) (cid:235)2 (cid:251) (cid:235)4 (cid:251) 30. Number of integers statisfying the equation |x2 (cid:43)5x|(cid:43)|x (cid:45)x2|(cid:61)|6x| is : (a) 3 (b) 5 (c) 7 (d) 9 31. Which of the following is not an odd function ? (cid:230) x4 (cid:43) x2 (cid:43)1 (cid:246) (a) ln(cid:231) (cid:247) (cid:232)(cid:231)(x2 (cid:43) x (cid:43)1)2 (cid:248)(cid:247) (b) sgn(sgn(x)) (c) sin(tanx) (cid:230)1(cid:246) (cid:230)1(cid:246) (d) f(x), where f(x)(cid:43) f(cid:231) (cid:247)(cid:61) f(x)(cid:215) f(cid:231) (cid:247) (cid:34)x(cid:206)R (cid:45){0} and f(2)(cid:61)33 (cid:232) x(cid:248) (cid:232) x(cid:248)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.