ebook img

Advanced numerical and semi-analytical methods for differential equations PDF

238 Pages·2019·1.598 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced numerical and semi-analytical methods for differential equations

(cid:2) AdvancedNumericalandSemi-Analytical MethodsforDifferentialEquations (cid:2) (cid:2) (cid:2) (cid:2) Advanced Numerical and Semi-Analytical Methods for Differential Equations SnehashishChakraverty,NishaRaniMahato, PerumandlaKarunakar,andTharasiDilleswarRao (cid:2) (cid:2) NationalInstituteofTechnology Rourkela,Odisha,India (cid:2) (cid:2) Thiseditionfirstpublished2019 ©2019JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofSnehashishChakraverty,NishaRaniMahato,PerumandlaKarunakar,andTharasi DilleswarRaotobeidentifiedastheauthorsofthisworkhasbeenassertedinaccordance withlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarranties (cid:2) ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby (cid:2) salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefact thatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsit maymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationDataisAppliedFor HardbackISBN:9781119423423 Coverdesign:Wiley Coverimage:CourtesyofSnehashishChakraverty Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents Acknowledgments xi Preface xiii 1 BasicNumericalMethods 1 1.1 Introduction 1 1.2 OrdinaryDifferentialEquation 2 1.3 EulerMethod 2 1.4 ImprovedEulerMethod 5 (cid:2) 1.5 Runge–KuttaMethods 7 (cid:2) 1.5.1 MidpointMethod 7 1.5.2 Runge–KuttaFourthOrder 8 1.6 MultistepMethods 10 1.6.1 Adams–BashforthMethod 10 1.6.2 Adams–MoultonMethod 10 1.7 Higher-OrderODE 13 References 16 2 IntegralTransforms 19 2.1 Introduction 19 2.2 LaplaceTransform 19 2.2.1 SolutionofDifferentialEquationsUsingLaplaceTransforms 20 2.3 FourierTransform 25 2.3.1 SolutionofPartialDifferentialEquationsUsingFourier Transforms 26 References 28 3 WeightedResidualMethods 31 3.1 Introduction 31 3.2 CollocationMethod 33 3.3 SubdomainMethod 35 3.4 Least-squareMethod 37 (cid:2) (cid:2) vi Contents 3.5 GalerkinMethod 39 3.6 ComparisonofWRMs 40 References 42 4 BoundaryCharacteristicsOrthogonalPolynomials 45 4.1 Introduction 45 4.2 Gram–SchmidtOrthogonalizationProcess 45 4.3 GenerationofBCOPs 46 4.4 Galerkin’sMethodwithBCOPs 46 4.5 Rayleigh–RitzMethodwithBCOPs 48 References 51 5 FiniteDifferenceMethod 53 5.1 Introduction 53 5.2 FiniteDifferenceSchemes 53 5.2.1 FiniteDifferenceSchemesforOrdinaryDifferentialEquations 54 5.2.1.1 ForwardDifferenceScheme 54 5.2.1.2 BackwardDifferenceScheme 55 5.2.1.3 CentralDifferenceScheme 55 5.2.2 FiniteDifferenceSchemesforPartialDifferentialEquations 55 (cid:2) 5.3 ExplicitandImplicitFiniteDifferenceSchemes 55 (cid:2) 5.3.1 ExplicitFiniteDifferenceMethod 56 5.3.2 ImplicitFiniteDifferenceMethod 57 References 61 6 FiniteElementMethod 63 6.1 Introduction 63 6.2 FiniteElementProcedure 63 6.3 GalerkinFiniteElementMethod 65 6.3.1 OrdinaryDifferentialEquation 65 6.3.2 PartialDifferentialEquation 71 6.4 StructuralAnalysisUsingFEM 76 6.4.1 StaticAnalysis 76 6.4.2 DynamicAnalysis 78 References 79 7 FiniteVolumeMethod 81 7.1 Introduction 81 7.2 DiscretizationTechniquesofFVM 82 7.3 GeneralFormofFiniteVolumeMethod 82 7.3.1 SolutionProcessAlgorithm 83 7.4 One-DimensionalConvection–DiffusionProblem 84 7.4.1 GridGeneration 84 (cid:2) (cid:2) Contents vii 7.4.2 SolutionProcedureofConvection–DiffusionProblem 84 References 89 8 BoundaryElementMethod 91 8.1 Introduction 91 8.2 BoundaryRepresentationandBackgroundTheoryofBEM 91 8.2.1 LinearDifferentialOperator 92 8.2.2 TheFundamentalSolution 93 8.2.2.1 HeavisideFunction 93 8.2.2.2 DiracDeltaFunction 93 8.2.2.3 FindingtheFundamentalSolution 94 8.2.3 Green’sFunction 95 8.2.3.1 Green’sIntegralFormula 95 8.3 DerivationoftheBoundaryElementMethod 96 8.3.1 BEMAlgorithm 96 References 100 9 Akbari–Ganji’sMethod 103 9.1 Introduction 103 9.2 NonlinearOrdinaryDifferentialEquations 104 (cid:2) 9.2.1 Preliminaries 104 (cid:2) 9.2.2 AGMApproach 104 9.3 NumericalExamples 105 9.3.1 UnforcedNonlinearDifferentialEquations 105 9.3.2 ForcedNonlinearDifferentialEquation 107 References 109 10 Exp-FunctionMethod 111 10.1 Introduction 111 10.2 BasicsofExp-FunctionMethod 111 10.3 NumericalExamples 112 References 117 11 AdomianDecompositionMethod 119 11.1 Introduction 119 11.2 ADMforODEs 119 11.3 SolvingSystemofODEsbyADM 123 11.4 ADMforSolvingPartialDifferentialEquations 125 11.5 ADMforSystemofPDEs 127 References 130 12 HomotopyPerturbationMethod 131 12.1 Introduction 131 (cid:2) (cid:2) viii Contents 12.2 BasicIdeaofHPM 131 12.3 NumericalExamples 133 References 138 13 VariationalIterationMethod 141 13.1 Introduction 141 13.2 VIMProcedure 141 13.3 NumericalExamples 142 References 146 14 HomotopyAnalysisMethod 149 14.1 Introduction 149 14.2 HAMProcedure 149 14.3 NumericalExamples 151 References 156 15 DifferentialQuadratureMethod 157 15.1 Introduction 157 15.2 DQMProcedure 157 15.3 NumericalExamples 159 (cid:2) (cid:2) References 165 16 WaveletMethod 167 16.1 Introduction 167 16.2 HaarWavelet 168 16.3 Wavelet–CollocationMethod 170 References 175 17 HybridMethods 177 17.1 Introduction 177 17.2 HomotopyPerturbationTransformMethod 177 17.3 LaplaceAdomianDecompositionMethod 182 References 186 18 PreliminariesofFractalDifferentialEquations 189 18.1 IntroductiontoFractal 189 18.1.1 TriadicKochCurve 190 18.1.2 SierpinskiGasket 190 18.2 FractalDifferentialEquations 191 18.2.1 HeatEquation 192 18.2.2 WaveEquation 194 References 194 (cid:2) (cid:2) Contents ix 19 DifferentialEquationswithIntervalUncertainty 197 19.1 Introduction 197 19.2 IntervalDifferentialEquations 197 19.2.1 IntervalArithmetic 198 19.3 GeneralizedHukuharaDifferentiabilityofIDEs 198 19.3.1 ModelingIDEsbyHukuharaDifferentiability 199 19.3.1.1 SolvingbyIntegralForm 199 19.3.1.2 SolvingbyDifferentialForm 199 19.4 AnalyticalMethodsforIDEs 201 19.4.1 Generalformofnth-orderIDEs 202 19.4.2 MethodBasedonAdditionandSubtractionofIntervals 202 References 206 20 DifferentialEquationswithFuzzyUncertainty 209 20.1 Introduction 209 20.2 SolvingFuzzyLinearSystemofDifferentialEquations 209 20.2.1 𝛼-CutofTFN 209 20.2.2 FuzzyLinearSystemofDifferentialEquations(FLSDEs) 210 20.2.3 SolutionProcedureforFLSDE 211 References 215 (cid:2) (cid:2) 21 IntervalFiniteElementMethod 217 21.1 Introduction 217 21.1.1 Preliminaries 218 21.1.1.1 ProperandImproperInterval 218 21.1.1.2 IntervalSystemofLinearEquations 218 21.1.1.3 GeneralizedIntervalEigenvalueProblem 219 21.2 IntervalGalerkinFEM 219 21.3 StructuralAnalysisUsingIFEM 223 21.3.1 StaticAnalysis 223 21.3.2 DynamicAnalysis 225 References 227 Index 231 (cid:2) (cid:2) xi Acknowledgments Thefirstauthorgreatlyappreciatesthepatience,support,andencouragement providedbyhisfamilymembers,inparticular,hiswifeShewli,anddaughters Shreyati and Susprihaa. The book may not have been possible without the blessings of his parents late Sh. Birendra K. Chakraborty and Smt. Parul Chakraborty.Thesecondauthor’swarmestgratitudegoestoherfamilymem- bers for their continuous motivation and support, especially Sh. Devendra Mahato, Smt. Premshila, Tanuja, Devasish, and Satish. Further, the third author would like to thank for the support and encouragement provided by (cid:2) all his family members, in particular, his parents Sh. Veeraiah Perumandla (cid:2) and Smt. Alivela Perumandla, and his wife Madhavi as well as sons Charan SaiandHarshavardhan.Finally,thefourthauthorwouldliketoacknowledge the blessings and motivation provided by his family members, especially his parents Sh. Tharasi Rama Rao and Smt. Tharasi Mahalaxmi. Also second, third,andfourthauthorsappreciatetheinspirationofthefirstauthorandhis family. Oursincereacknowledgmentgoestothereviewersfortheirfruitfulsugges- tionsandappreciationsinthebookproposal.Further,alltheauthorsdoappre- ciatethesupportandhelpofthewholeteamofWiley.Finally,wearegreatly indebted to the authors/researchers mentioned in the bibliography sections givenattheendofeachchapter. S.Chakraverty N.R.Mahato P.Karunakar T.D.Rao (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.