ebook img

Advanced modern algebra PDF

1056 Pages·2002·5.644 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced modern algebra

Advanced Modern Algebra by Joseph J. Rotman Hardcover: 1040 pages Publisher: Prentice Hall; 1st edition (2002); 2nd printing (2003) Language: English ISBN: 0130878685 Book Description This book's organizing principle is the interplay between groups and rings, where “rings” includes the ideas of modules. It contains basic definitions, complete and clear theorems (the first with brief sketches of proofs), and gives attention to the topics of algebraic geometry, computers, homology, and representations. More than merely a succession of definition-theorem-proofs, this text put results and ideas in context so that students can appreciate why a certain topic is being studied, and where definitions originate. Chapter topics include groups; commutative rings; modules; principal ideal domains; algebras; cohomology and representations; and homological algebra. For individuals interested in a self-study guide to learning advanced algebra and its related topics. Book Info Contains basic definitions, complete and clear theorems, and gives attention to the topics of algebraic geometry, computers, homology, and representations. For individuals interested in a self-study guide to learning advanced algebra and its related topics. Tomywife Marganit andourtwowonderfulkids, DannyandElla, whomIloveverymuch Contents SecondPrinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Etymology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii SpecialNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter1 ThingsPast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. SomeNumberTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. RootsofUnity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3. SomeSetTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter2 GroupsI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2. Permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3. Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4. Lagrange’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5. Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.6. QuotientGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.7. GroupActions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Chapter3 CommutativeRingsI . . . . . . . . . . . . . . . . . . . . . 116 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.2. FirstProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 3.3. Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.4. GreatestCommonDivisors . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.5. Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 3.6. EuclideanRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 3.7. LinearAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 LinearTransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 3.8. QuotientRingsandFiniteFields . . . . . . . . . . . . . . . . . . . . . . . 182 v vi Contents Chapter4 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 4.1. InsolvabilityoftheQuintic . . . . . . . . . . . . . . . . . . . . . . . . . . 198 FormulasandSolvabilitybyRadicals . . . . . . . . . . . . . . . . . . . 206 TranslationintoGroupTheory . . . . . . . . . . . . . . . . . . . . . . . 210 4.2. FundamentalTheoremofGaloisTheory . . . . . . . . . . . . . . . . . . . 218 Chapter5 GroupsII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 5.1. FiniteAbelianGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 DirectSums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 BasisTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 FundamentalTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 5.2. TheSylowTheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 5.3. TheJordan–Ho¨lderTheorem . . . . . . . . . . . . . . . . . . . . . . . . . 278 5.4. ProjectiveUnimodularGroups . . . . . . . . . . . . . . . . . . . . . . . . 289 5.5. Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 5.6. TheNielsen–SchreierTheorem . . . . . . . . . . . . . . . . . . . . . . . . 311 Chapter6 CommutativeRingsII . . . . . . . . . . . . . . . . . . . . . 319 6.1. PrimeIdealsandMaximalIdeals . . . . . . . . . . . . . . . . . . . . . . . 319 6.2. UniqueFactorizationDomains . . . . . . . . . . . . . . . . . . . . . . . . 326 6.3. NoetherianRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 6.4. ApplicationsofZorn’sLemma . . . . . . . . . . . . . . . . . . . . . . . . 345 6.5. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 6.6. Gro¨bnerBases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 GeneralizedDivisionAlgorithm . . . . . . . . . . . . . . . . . . . . . . 400 Buchberger’sAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 411 Chapter7 ModulesandCategories . . . . . . . . . . . . . . . . . . . 423 7.1. Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 7.2. Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 7.3. Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 7.4. FreeModules,Projectives,andInjectives . . . . . . . . . . . . . . . . . . . 471 7.5. GrothendieckGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 7.6. Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Chapter8 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 8.1. NoncommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 8.2. ChainConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 8.3. SemisimpleRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 8.4. TensorProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 8.5. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 8.6. TheoremsofBurnsideandofFrobenius . . . . . . . . . . . . . . . . . . . 634 Contents vii Chapter9 AdvancedLinearAlgebra . . . . . . . . . . . . . . . . . . 646 9.1. ModulesoverPIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 9.2. RationalCanonicalForms . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 9.3. JordanCanonicalForms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 9.4. SmithNormalForms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 9.5. BilinearForms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 9.6. GradedAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 9.7. DivisionAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 9.8. ExteriorAlgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 9.9. Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 9.10. LieAlgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 Chapter10 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781 10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781 10.2. SemidirectProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 10.3. GeneralExtensionsandCohomology . . . . . . . . . . . . . . . . . . . . 794 10.4. HomologyFunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 10.5. DerivedFunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 10.6. ExtandTor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852 10.7. CohomologyofGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 870 10.8. CrossedProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887 10.9. IntroductiontoSpectralSequences . . . . . . . . . . . . . . . . . . . . . 893 Chapter11 CommutativeRingsIII . . . . . . . . . . . . . . . . . . . 898 11.1. LocalandGlobal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 11.2. DedekindRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 Integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 NullstellensatzRedux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931 AlgebraicIntegers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 CharacterizationsofDedekindRings . . . . . . . . . . . . . . . . . . . . 948 FinitelyGeneratedModulesoverDedekindRings . . . . . . . . . . . . . 959 11.3. GlobalDimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969 11.4. RegularLocalRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 Appendix TheAxiomofChoiceandZorn’sLemma . . . . . . . . A-1 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 Second Printing Itismygoodfortunethatseveralreadersofthefirstprintingthisbookapprisedmeof errataIhadnotnoticed,oftengivingsuggestionsforimprovement. Igivespecialthanksto NickLoehr,RobinChapman,andDavidLeepfortheirgeneroussuchhelp. PrenticeHallhasallowedmetocorrecteveryerrorfound;thissecondprintingissurely betterthanthefirstone. JosephRotman May2003 viii Preface Algebraisusedbyvirtuallyallmathematicians,betheyanalysts,combinatorists,com- puter scientists, geometers, logicians, number theorists, or topologists. Nowadays, ev- eryone agrees that some knowledge of linear algebra, groups, and commutative rings is necessary, and these topics are introduced in undergraduate courses. We continue their study. Thisbookcanbeusedasatextforthefirstyearofgraduatealgebra,butitismuchmore than that. It can also serve more advanced graduate students wishing to learn topics on theirown;whilenotreachingthefrontiers,thebookdoesprovideasenseofthesuccesses andmethodsarisinginanarea. Finally,thisisareferencecontainingmanyofthestandard theoremsanddefinitionsthatusersofalgebraneedtoknow. Thus,thebookisnotonlyan appetizer,butaheartymealaswell. WhenIwasastudent, BirkhoffandMacLane’sASurveyofModernAlgebrawasthe text for my first algebra course, and van der Waerden’s Modern Algebra was the text for my second course. Both are excellent books (I have called this book Advanced Modern Algebrainhomagetothem),buttimeshavechangedsincetheirfirstappearance: Birkhoff and Mac Lane’s book first appeared in 1941, and van der Waerden’s book first appeared in 1930. There are today major directions that either did not exist over 60 years ago, or thatwerenotthenrecognizedtobesoimportant. Thesenewdirectionsinvolvealgebraic geometry, computers, homology, and representations (A Survey of Modern Algebra has been rewritten as Mac Lane–Birkhoff, Algebra, Macmillan, New York, 1967, and this versionintroducescategoricalmethods;categorytheoryemergedfromalgebraictopology, butwasthenusedbyGrothendiecktorevolutionizealgebraicgeometry). Letmenowaddressreadersandinstructorswhousethebookasatextforabeginning graduatecourse.IfIcouldassumethateveryonehadalreadyreadmybook,AFirstCourse inAbstractAlgebra,thentheprerequisitesforthisbookwouldbeplain. Butthisisnota realisticassumption;differentundergraduatecoursesintroducingabstractalgebraabound, asdotextsforthesecourses. Formany,linearalgebraconcentratesonmatricesandvector spacesovertherealnumbers,withanemphasisoncomputingsolutionsoflinearsystems ofequations;othercoursesmaytreatvectorspacesoverarbitraryfields,aswellasJordan and rational canonical forms. Some courses discuss the Sylow theorems; some do not; somecoursesclassifyfinitefields;somedonot. Toaccommodatereadershavingdifferentbackgrounds,thefirstthreechapterscontain ix x Preface many familiar results, with many proofs merely sketched. The first chapter contains the fundamental theorem of arithmetic, congruences, De Moivre’s theorem, roots of unity, cyclotomic polynomials, and some standard notions of set theory, such as equivalence relationsandverificationofthegroupaxiomsforsymmetricgroups. Thenexttwochap- ters contain both familiar and unfamiliar material. “New” results, that is, results rarely taught in a first course, have complete proofs, while proofs of “old” results are usually sketched. Inmoredetail,Chapter2isanintroductiontogrouptheory,reviewingpermuta- tions,Lagrange’stheorem,quotientgroups,theisomorphismtheorems,andgroupsacting on sets. Chapter 3 is an introduction to commutative rings, reviewing domains, fraction fields,polynomialringsinonevariable,quotientrings,isomorphismtheorems,irreducible polynomials, finitefields, andsomelinearalgebraoverarbitraryfields. Readersmayuse “older” portions of these chapters to refresh their memory of this material (and also to seemynotationalchoices);ontheotherhand,thesechapterscanalsoserveasaguidefor learningwhatmayhavebeenomittedfromanearliercourse(completeproofscanbefound inAFirstCourseinAbstractAlgebra). Thisformatgivesmorefreedomtoaninstructor, for there is a variety of choices for the starting point of a course of lectures, depending on what best fits the backgrounds of the students in a class. I expect that most instruc- tors would begin a course somewhere in the middle of Chapter 2 and, afterwards, would continue from some point in the middle of Chapter 3. Finally, this format is convenient fortheauthor, becauseitallowsmetoreferbacktotheseearlierresultsinthemidstofa discussionoraproof. Proofsinsubsequentchaptersarecompleteandarenotsketched. Ihavetriedtowriteclearandcompleteproofs,omittingonlythosepartsthataretruly routine; thus, it is not necessary for an instructor to expound every detail in lectures, for studentsshouldbeabletoreadthetext. Hereisamoredetailedaccountofthelaterchaptersofthisbook. Chapter 4 discusses fields, beginning with an introduction to Galois theory, the inter- relationshipbetweenringsandgroups. Weprovetheinsolvabilityofthegeneralpolyno- mial of degree 5, the fundamental theorem of Galois theory, and applications, such as a proofofthefundamentaltheoremofalgebra,andGalois’stheoremthatapolynomialover afieldofcharacteristic0issolvablebyradicalsifandonlyifitsGaloisgroupisasolvable group. Chapter 5 covers finite abelian groups (basis theorem and fundamental theorem), the Sylowtheorems,Jordan–Ho¨ldertheorem,solvablegroups,simplicityofthelineargroups PSL(2,k),freegroups,presentations,andtheNielsen–Schreiertheorem(subgroupsoffree groupsarefree). Chapter6introducesprimeandmaximalidealsincommutativerings;Gauss’stheorem thatR[x]isaUFDwhenRisaUFD;Hilbert’sbasistheorem,applicationsofZorn’slemma to commutative algebra (a proof of the equivalence of Zorn’s lemma and the axiom of choiceisintheappendix),inseparability,transcendencebases,Lu¨roth’stheorem,affineva- rieties,includingaproofoftheNullstellensatzforuncountablealgebraicallyclosedfields (the full Nullstellensatz, for varieties over arbitrary algebraically closed fields, is proved in Chapter 11); primary decomposition; Gro¨bner bases. Chapters 5 and 6 overlap two chaptersofAFirstCourseinAbstractAlgebra,butthesechaptersarenotcoveredinmost

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.