ebook img

Advanced methods for space simulations PDF

281 Pages·36.649 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced methods for space simulations

Advanced Methods for Space Simulations Cover: Demonstration that the KEMPO1 code can simultaneously accommodate both an electrostatic two-stream instability and an electromagnetic instability. An electron beam with a gyrotropic ring distribution is injected into a thermal plasma with a drift velocity along the static magnetic field. Both beam electrons and thermal electrons undergo strong diffusion in the pitch-angle and parallel velocity. Advanced Methods for Space Simulations Edited by H. Usui and Y. Omura TERRAPUB, Tokyo Advanced Methods for Space Simulations Edited by H. Usui and Y. Omura ISBN 978-4-88704-138-7 Published by TERRAPUB, 2003 Sansei Jiyuugaoka Haimu, 27-19 Okusawa 5-chome, Setagaya-ku, Tokyo 158-0083, Japan. Tel: +81-3-3718-7500 Fax: +81-3-3718-4406 URL http://www.terrapub.co.jp/ All rights reserved © 2007 by TERRAPUB, Tokyo No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photo-copying, recording or by any information storage and retrieval system, without written permission from the copyright owner. (This book is partly supported by Grant-in-Aid for Publication of Scientific Research Results of the Japan Society for the Promotion of Science.) Printed in Japan Preface The International School for Space Simulations (ISSS) was established in the early 1980’s by M. Ashour-Abdalla, R. Gendrin, H. Matsumoto and T. Sato to pro- mote science and technology related to space plasma physics via computer simula- tions. The series of ISSSs were held at Kyoto in Japan (1982), Hawaii in U.S.A. (1985), La Londe-les-Maures/Beaulieu-sur-Mer in France (1987), Kyoto / Nara in Japan (1990), Uji, Kyoto in Japan (1996), and Garching in Germany (2001). They have greatly contributed not only to promotion and advancement of space simula- tions,butalsotoeducationofyoungscientistsandstudents. InMarch2005theseventhISSS(ISSS-7)washeldatKyoto,Japan. Thepresent book was inspired by ISSS-7, and it is a collection of extended lecture notes of the tutorialsgivenatISSS-7bytheinvitedlecturerswhohavebeenactivelyinvolvedin computersimulationtechniquesinspaceplasmaphysics. Theaimofthisbookistoprovidetheinformationonthelatestadvancedmeth- odsforspaceplasmasimulationstothosewhohavebeeninvestigatingspaceplasma science by numerical simulations. The present book treats a wide variety of issues on advanced techniques of space simulations. The book contains lecture notes on advancedschemesofPIC(Particle-In-Cell)simulationnewlyincorporatedinthefull particlemodelandthehybridmodel,advancedsimulationssuchastheDelta-fmodel, adaptivePICmodel,Vlasovsimulation,anddiscrete-eventsimulation. Inassociation with space simulations, techniques on unstructured mesh generation and advanced visualizationaredescribed. Somesimulationcodesareincludedinthetextattheend ofthebook. Before the reader studies the advanced methods in the present book, we recom- mendthatthereadersfirststudybasicspacesimulationtechniquespublishedinearlier textbooks or WEB sites (e.g. “Computer Space Plasma Physics: Simulation Tech- niques and Software” edited by H. Matsumoto and Y. Omura. The contents of the bookarenowavailableathttp://www.terrapub.co.jp/e-library/cspp/index.html). Theeditorsaregratefulnotonlytotheimmenseeffortsmadebythelecturerswho preparedtheextendedmanuscriptsofthelecturenotes, butalsototherefereeswho contributedtotheimprovementofthemanuscripts. Finally,ontheretirementofProfessorHiroshiMatsumotofromtheprofessorship atKyotoUniversityin2005,wewouldliketoexpressourheartygratitudetohimfor his dedicated contribution to the progress of computer simulations in space plasma physicsandspaceengineeringthroughISSSformorethan20years. January,2007 HideyukiUsui YoshiharuOmura v Contents Preface ................................................................ v SimulationTechniques One-dimensional Electromagnetic Particle Code: KEMPO1 A Tutorial on Micro- physicsinSpacePlasmas Y.Omura .......................................................... 1 Vlasov-codesimulation J.Bu¨chner ........................................................ 23 δf Particle-in-CellPlasmaSimulationModel: PropertiesandApplications R.D.Sydora ...................................................... 47 AutomaticAdaptiveMulti-DimensionalParticleInCell G.Lapenta ........................................................ 61 GeneralizedCurvilinearCoordinatesinHybridandElectromagneticCodes D.W.Swift ....................................................... 77 ANewMethodologyforMulti-ScaleSimulationofPlasmas H.Karimabadi,Y.Omelchenko,J.Driscoll,R.Fujimoto,andK.Perumalla..91 NumericalmethodsusedintheLyon-Fedder-MobarryGlobalcodetomodelthemag- netosphere J.G.Lyon ....................................................... 101 UnstructuredMeshesandFiniteElementsinSpacePlasmaModelling:Principlesand Applications R.Marchand,J.Y.Lu,K.Kabin,andR.Rankin ..................... 111 VisualizationofTangledVectorFieldTopologyandGlobalBifurcationofMagneto- sphericDynamics D.Cai,K.Nishikawa,andB.Lembege ............................. 145 IntroductiontoVirtualRealityVisualizationbytheCAVEsystem N.OhnoandA.Kageyama ........................................ 167 SimulationSoftware KEMPO1KyotouniversityElectroMagneticParticlecOde: 1dversion Y.Omura ........................................................ 209 TheElementsforSettingupaHybridorElectromagneticCodeinCurvilinearCoor- dinates D.W.Swift ...................................................... 237 vii AdvancedMethodsforSpaceSimulations,editedbyH.UsuiandY.Omura,pp.1–21. (cid:1)c TERRAPUB,Tokyo,2007. One-dimensionalElectromagneticParticleCode: KEMPO1 ATutorialonMicrophysicsinSpacePlasmas YoshiharuOmura ResearchInstituteforSustainableHumanosphere,KyotoUniversity,Japan [email protected] 1 Introduction Thebasictechniquesandimportantconceptsoftheone-dimensionalelectromag- netic particle code: KEMPO1 [Omura and Matsumoto, 1993] are reviewed briefly inthisarticle. Inthecode,Maxwell’sequationsandequationsofmotionsforalarge numberofsuperparticlesaresolved.Becauseofthelimitationinthenumberofsuper- particles, electrostatic thermal fluctuations are enhanced in the particle code, which ofteninterferewithphysicalprocessestobereproducedinsimulations. Fromasim- plifiedanalysisofthefluctuations,acriterionfortheratioofthegridspacingtothe Debye length is given. A modification of the KEMPO1 for the solution of the rel- ativistic equations of motion is also described. Since essential parts of the code are very simple and short, it is easy to modify the code regarding the initialization and theboundaryconditions. Tofacilitatemodificationofthecodeanditsverificationby graphicoutputs,wehaverewrittentheKEMPO1codeusingtheMATLABprogram- ming software. MATLAB provides us with a convenient graphic user interface and flexible graphic diagnostics. Explanation of the input parameters for the relativistic KEMPO1/MATLABcodeandseveralexamplesofapplicationsaregivenfortutorial purposes. 2 BasicEquationsandMethodsofComputation Electromagnetic processes in space plasmas are governed by Maxwell’s equa- tions: 1 ∂E ∇×B=µ J+ (1) 0 c2 ∂t ∂B ∇×E=− (2) ∂t ρ ∇·E= (3) ε o ∇·B=0 (4) whereJ,ρ,c,ε ,andµ arethecurrentdensity,chargedensity,lightspeed,electric o 0 permittivity,andmagneticpermeability,respectively. Insimulationsthevaluesofthe 1 2 Y.Omura permittivityε andpermeabilityµ canbedefinedarbitrarily,aslongastheysatisfy 0 0 therelation 1 ε µ = . (5) 0 0 c2 IntheKEMPO1,forsimplicity,weadoptthefollowingdefinition 1 ε =1, µ = . 0 0 c2 WesolveMaxwell’sequationsfortheelectricfieldE ≡ (E ,E ,E )andmag- x y z neticfieldB≡(B ,B )inaone-dimensionalsystem. Itisnotedthat B isaconstant y z x intheone-dimensionalsystembecauseof(4). Inavacuumwithoutanychargedpar- ticles, we have J = 0. The set of Maxwell’s equations (1) and (2) are solved by the standard FDTD (Finite Difference Time Domain) method, which has been used widelyinthevariousfieldofradioscience. We introduce two sets of spatial grid systems along the x-axis. One is a full- integergridsystemdefinedati(cid:10)x (i =1,2,3,...,Nx)andtheotherisahalf-integer grid system at (i +1/2)(cid:10)x. We define E , B , J , and ρ on the full-integer grids, y y y and E , E , B , J onthehalf-integergrids. Wereplacespatialandtimederivatives x z z x inMaxwell’sequationswiththefollowingcentereddifferencesby(cid:10)x andthetime step(cid:10)t. By,i+(cid:10)1−x By,i =µoJz,i+1/2 (6) Bz,i+1/2(cid:10)−xBz,i−1/2 =−µoJy,i (7) E(X ,t)= E exp(kX −ωt) (8) i o i ∂E(X ,t) E(X +(cid:10)x/2,t)−E(X −(cid:10)x/2,t) i = i i ∂x (cid:10)x 1 = [exp(k(cid:10)x/2)−exp(−k(cid:10)x/2)] E(X ,t) (cid:10)x i sin(k(cid:10)x/2) =i E(X ,t)=iKE(X ,t) (9) (cid:10)x/2 i i where sin(k(cid:10)x/2) K = (10) (cid:10)x/2 Becauseofthecentereddifferencescheme,thedispersionrelationofelectromag- neticwavesinavacuumω2 =c2k2isreplacedbyamodifieddispersionrelation (cid:13)2 =c2K2 (11) One-dimensionalElectromagneticParticleCode:KEMPO1 3 where(cid:13)isgivenby sin(ω(cid:10)t/2) (cid:13)= . (12) (cid:10)t/2 ThisgivestheCourantconditionforthetimestepandthegridspacing, c(cid:10)t <(cid:10)x. (13) If the Courant condition is violated, the electromagnetic field grows exponentially becauseoftheimaginarypartofωasasolutionof(12). Inthepresenceofchargedparticles,weneedtocomputethechargedensityand the current density to incorporate their effects on the electromagnetic field. The chargedensityρ onagridpointatx = X iscalculatedby i i 1 (cid:2)Np ρ = q W(x −X ) (14) i (cid:10)x j j i j whereW isaparticleshapefunctiongivenby x W(x)=1− |x|,|x|≤(cid:10)x (cid:10)x = 0, |x|>(cid:10)x (15) Thesummationin(14)istakenforall N particlesinthesimulationsystem. p Theinitialelectricfield E iscalculatedfrom(3)inthedifferenceform x Ex,i+1/2−Ex,i−1/2 = ρi (16) (cid:10)x ε 0 whereε istheelectricpermittivity. 0 ThecurrentdensityJ iscalculatedbasedonthechargeconservationmethod[Vil- x lasenorandBuneman,1992;Umedaetal.,2003]satisfyingthecontinuityequations ofthecharge, Jt+(cid:10)t/2− Jt+(cid:10)t/2 =−(cid:10)x(ρt+(cid:10)t −ρt). (17) x,i+1/2 x,i−1/2 (cid:10)t i i Thecurrentdensities J and J arecalculatedby y z Jit++(cid:10)1/t2/2 = (cid:10)1x (cid:2)Np qjvW(xj −Xi+1/2). (18) j The values of J calculated at the half-integer grids are relocated to the full- y integergridsbythefollowingprocedure: Jy,i = Jy,i−1/2+ Jy,i+1/2. (19) 2 4 Y.Omura Fig.1. Dispersionrelationofthethermalnoiseinanunmagnetizedplasma. With these components of the current density J, we can trace time evolution of electromagnetic fields E and B by solving Maxwell’s equations with the FDTD method. In Fig. 1, we plotted frequency ω and wavenumber k spectra of an electromag- netic component E obtained by a run of the KEMPO1 code. The electromagnetic z fluctuationisinducedbythecurrentdensitiesduetothethermalmotionoftheplasma. UsingthetechniqueofthefastFouriertransform(FFT),wehaveappliedthediscrete Fouriertransformtotheelectricfieldcomponent E inspaceandtime. Theforward z andbackwardtravelingwavesareseparatedbypositiveandnegativewavenumbers, respectively. TheseparationtechniqueisdescribedinMatsumotoandOmura[1985]. Aswefindinthemodifieddispersionrelationduetothecentereddifferencescheme describedabove,thehighfrequencypartofthedispersionrelationofelectromagnetic waves deviates from the oblique dashed lines representing the speed of light. The holizontaldashedlineindicatestheelectronplasmafrequency. SincethecurrentdensityJ exactlysatisfiesthecontinuityequationsofthecharge x density, E updatedbythecurrentdensity J automaticallysatisfy(16),ifthediffer- x x enceequationissatisfiedinitially. The equations of motion for a particle with a charge q and a mass m are the following: dv q = (E+v×B), (20) dt m

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.