ebook img

Advanced Mechanics and General Relativity (Instructor Solution Manual, Solutions) PDF

166 Pages·2010·3.037 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Mechanics and General Relativity (Instructor Solution Manual, Solutions)

Solution Manual for Advanced Mechanics and General Relativity Joel Franklin Draft date August 25, 2010 2 Chapter 1 Newtonian Gravity Problem 1.1 From the Euler-Lagrange equations of motion: d ∂L ∂L = 0 (1.1) dt ∂x˙ − ∂x µ ∂ we have mx¨+A= 0 mx¨ = A, (1.2) −→ − and this corresponds to motion under the influence of a constant force A (for example, A=mg). The constant B provides an energy offset to the potential U =Ax+B, and has no dynamical effect. Problem 1.2 a. For x(t) = xft, we have: T T 1 T 1 x 2 1 x2 S = mx˙2dt = m f dt = m f. (1.3) 2 2 T 2 T Z0 Z0 ≥ ¥ b. For x(t) = xTft + ∞j=1αj sin jTπt the action is: ≥ ¥ P 1 x2f 1 T ∞ jπ jπt ∞ kπ kπt S = m + m α cos α cos dt. j k 2 T 2  T T  T T Z0 j=1 µ ∂ √k=1 µ ∂! X X   (1.4) Noting that T jπt kπt 1 cos cos dt = Tδ , (1.5) jk T T 2 Z0 µ ∂ µ ∂ 3 4 CHAPTER 1. NEWTONIAN GRAVITY the sums in the second term of S collapse: S = 1mx2f + 1m ∞ 1T jπ 2 α2 2 T 2 2 T j j=1 µ ∂ X (1.6) = 1m x2f + 1T ∞ jπ 2 α2 . 2  T 2 T j j=1µ ∂ X   The first term is the value of S we got in part a. The second term, assuming it exists as an infinite sum, is a sum of positive quantities, so must itself be positive, and this action is larger than value in (1.3) for any non-zero α . j Problem 1.3 The Lagrangian, written in cylindrical coordinates, is: 1 L= m s˙2+s2φ˙2+z˙2 U(s). (1.7) 2 − ≥ ¥ From the Euler-Lagrange equations, we have: d ∂L ∂L d dU dU 0 = = (ms˙) msφ˙2+ =ms¨ msφ˙2+ (1.8) dt ∂s˙ − ∂s dt − ds − ds µ ∂ so that dU ms¨=msφ˙2 . (1.9) − ds For φ: d ∂L ∂L d 0 = = ms2φ˙ =ms2φ¨+2mss˙φ˙ (1.10) dt ∂φ˙ − ∂φ dt µ ∂ ≥ ¥ or ms2φ¨= 2mss˙φ˙. (1.11) − Finally, for z: d ∂L ∂L d 0 = = (mz˙) =mz¨ (1.12) dt ∂z˙ − ∂z dt µ ∂ so that mz¨= 0. (1.13) 5 If we work from Newton’s second law in Cartesian coordinates, then we must use: x =s cosφ x¨ = cosφs¨ s cosφφ˙2+sinφφ¨ 2 sinφs˙φ˙ −→ − − ≥ ¥ y =s sinφ y¨= sinφs¨+s sinφφ˙2+cosφφ¨ +2 cosφs˙φ˙ (1.14) −→ − z =z z¨=z¨ ≥ ¥ −→ Together with Newton’s second law: ma = U( x2+y2), in components: −∇ dU x p mx¨ = −ds x2+y2 dU y (1.15) my¨= p −ds x2+y2 mz¨= 0 p Using the definitions, and derivatives in (1.14), we have: dU m cosφs¨ ms cosφφ˙2+sinφφ¨ 2m sinφs˙φ˙ = cosφ − − −ds ≥ ¥ dU m sinφs¨+ms sinφφ˙2+cosφφ¨ +2m cosφs˙φ˙ = sinφ (1.16) − −ds ≥ ¥ mz¨= 0, and if we multiply the top two equations by sinφ and cosφ respectively, we get: dU m cosφ sinφs¨ ms cosφ sinφφ˙2+sin2φφ¨ 2m sin2φs˙φ˙ = cosφ sinφ − − −ds ≥ ¥ dU m sinφ cosφs¨+ms sinφ cosφφ˙2+cos2φφ¨ +2m cos2φs˙φ˙ = sinφ cosφ − −ds ≥ ¥ (1.17) Subtracting the top from the bottom gives: msφ¨+2ms˙φ˙ = 0. (1.18) Using this equation, solved for φ¨, in the top equation of (1.16) gives dU m cosφs¨ ms cosφφ˙2+2m sinφs˙φ˙ 2m sinφs˙φ˙ = cosφ (1.19) − − −ds from which we obtain dU ms¨ msφ˙2 = . (1.20) − −ds 6 CHAPTER 1. NEWTONIAN GRAVITY Problem 1.4 ConsidertheLagrangianforacentralpotentialwritteninCartesiancoordinates: 1 L= m x˙2+y˙2+z˙2 U x2+y2+z2 . (1.21) 2 − ° ¢ ≥p ¥ To transform from Cartesian to cylindrical coordinates, we employ: x =scos(φ), y =ssin(φ), and z =z, (1.22) and, x˙ =s˙cos(φ) ssin(φ)φ˙ and y˙ =s˙sin(φ)+scos(φ)φ˙. (1.23) − So, in particular, x˙2 = cos2(φ)s˙2 2ssin(φ)cos(φ)s˙φ˙ +s2sin2(φ)φ˙2 − and y˙2 = sin2(φ)s˙2+2ssin(φ)cos(φ)s˙φ˙ +s2cos2(φ)φ˙2. (1.24) Evidently, the kinetic term of the Lagrangian transforms via: x˙2+y˙2+z˙2 =s˙2+s2φ˙2+z˙2, (1.25) and the potential terms transforms via: x2+y2+z2 =s2+z2. (1.26) So the Lagrangian for a central potential, written in cylindrical coordinates, is 1 L= m s˙2+s2φ˙2+z˙2 U s2+z2 . (1.27) 2 − ≥ ¥ ≥p ¥ Setting x1 = s, x2 = φ, and x3 = z, the metric associated with cylindrical coordinates must be: 1 0 0 g =˙ 0 s2 0 . (1.28) µν   0 0 1   Problem 1.5 7 a. Consider the equation of motion: 1 ∂g ∂g ∂g ∂U mg x¨ν + mx˙νx˙γ αν + αγ γν = . (1.29) αν 2 ∂xγ ∂xν − ∂xα −∂xα µ ∂ For α = 1, corresponding to the r component, we have: 1 ∂g ∂g ∂g ∂U mg x¨ν + mx˙νx˙γ 1ν + 1γ γν = . (1.30) 1ν 2 ∂xγ ∂xν − ∂x1 −∂x1 µ ∂ The metric, in spherical coordinates, is 1 0 0 g =˙ 0 r2 0 , (1.31) µν   0 0 r2sin2θ   and the only non-zero terms are g , g , and g . So, the r component of the 11 22 33 equation of motion now reads: 1 ∂g ∂g ∂U mx¨1+ m x˙2x˙2 22 x˙3x˙3 33 = , (1.32) 2 − ∂x1 − ∂x1 −∂x1 µ ∂ or, using x1 =r, x2 =θ, and x3 =φ, 1 ∂U mr¨+ m θ˙22r φ˙22r sin2θ = . (1.33) 2 − − −∂r ≥ ¥ So, ∂U mr¨ m rθ˙2+r sin2θφ˙2 = . (1.34) − −∂r ≥ ¥ b. Starting from 1 L= m r˙2+r2 sin2θφ˙2 U(r), (1.35) 2 − ≥ ¥ we have: d ∂L ∂L = 0, (1.36) dt ∂r˙ − ∂r or with L inserted, d 1 ∂U (mr˙) m 2rθ˙2+2r sin2θφ˙2 + = 0. (1.37) dt − 2 ∂r ≥ ¥ So, just as in part a, ∂U mr¨ m rθ˙2+r sin2θφ˙2 = . (1.38) − −∂r ≥ ¥ 8 CHAPTER 1. NEWTONIAN GRAVITY Problem 1.6 The two-dimensional case suffices to show the pattern: A11 A12 x A11x +A12x A1jx Ax = 1 = 1 2 = j , (1.39) A21 A22 x A21x +A22x A2jx 2 1 2 j µ ∂µ ∂ µ ∂ µ ∂ so Ax=˙Aijxj . Similarly, A11 A12 x A11+x A21 x Aj1 Aj1x xTA = x1 x2 A21 A22 = x1A12+x2A22 = xjAj2 = Aj2xj , 1 2 j j µ ∂ µ ∂ µ ∂ µ ∂ ° ¢ (1.40) so xTA=˙Ajixj . Problem 1.7 a. Break up T into pieces: µν 1 1 T = (T +T )+ (T T ) (1.41) µν µν νµ µν νµ 2 2 − Sµν Aµν ≡ ≡ | {z } | {z } and we can verify: 1 S = (T +T ) =S νµ νµ µν µν 2 1 A = (T T ) = A . (1.42) νµ νµ µν µν 2 − − b. We have: T Qµν =S Qµν +A Qµν. (1.43) µν µν µν But, A Qµν = A Qµν = A Qνµ = A Qµν = A Qµν = 0. (1.44) µν νµ νµ µν µν − − − ⇒ So, T Qµν =S Qµν. (1.45) µν µν Similarly, T Pµν =S Pµν+A Pµν =A Pµν. (1.46) µν µν µν µν =0 | {z } 9 c. Let Qνγ x˙νx˙γ, a symmetric tensor, and ≡ ∂g 1∂g αν γν T . (1.47) ανγ ≡ ∂xγ − 2 ∂xα Frompartb,QνγT =QνγS ,whereS istheportionofT symmetric ανγ ανγ ανγ ανγ under ν γ interchange. From part a, ↔ 1 S = (T +T ) ανγ ανγ αγν 2 1 ∂g 1∂g ∂g 1∂g αν γν αγ νγ = + , 2 ∂xγ − 2 ∂xα ∂xν − 2 ∂xα µ ∂ and since g =g , γν νγ 1 ∂g ∂g ∂g αν αγ γν = + . (1.48) 2 ∂xγ ∂xν − ∂xα µ ∂ Hence, ∂g 1∂g 1 ∂g ∂g ∂g x˙νx˙γ αν γν = x˙νx˙γ αν + αγ γν . (1.49) ∂xγ − 2 ∂xα 2 ∂xγ ∂xν − ∂xα µ ∂ µ ∂ Problem 1.8 a. We cannot use ρ(φ) or r(φ) for purely radial motion since in the case of, for example, infall along the yˆ axis, φ = π/2, a constant, leaving no varying parameter to describe the evolution of r. b. We must go back to the temporally parameterized Lagrangian: 1 L= m r˙2+r2φ˙2 U(r). (1.50) 2 − ≥ ¥ Rather than developing the equations of motion directly from L, we will work this time from the Hamiltonian H (which is numerically equivalent to the total energy E) and its conservation; we have 1 H =E = m r˙2+r2φ˙2 +U(r). (1.51) 2 ≥ ¥ If we set φ = 0, so the radial infall occurs along the xˆ axis (say), then 1 GMm E = mr˙2 . (1.52) 2 − r 10 CHAPTER 1. NEWTONIAN GRAVITY We start from spatial infinity at rest, r( ) = and r˙( ) = 0, so the −∞ ∞ −∞ total energy for this trajectory is (and will remain) E = 0. We are left to solve: 2GM 2MG r˙2 = = r˙ = . (1.53) r ⇒ − r r To solve, we separate variables and integrate with respect to t. On the left: t r(t) 2 √rr˙dt = √rdr = r(t)3/2 R3/2 , (1.54) 3 − Z0 ZR ≥ ¥ and on the right, t √2MGdt = √2MGt. (1.55) − − Z0 Equating and solving for r(t) gives our solution for radial infall: 2/3 MG r(t) = R3/2 3 t . (1.56) − 2 √ r ! Problem 1.9 a. For 1 M L= r˙2+r2φ˙2 + , (1.57) 2 r ≥ ¥ we have the Hamiltonian: 1 M H = r˙2+r2φ˙2 . (1.58) 2 − r ≥ ¥ Using the φ component of the equation of motion: d ∂L = 0 = r2φ˙ =J , (1.59) dt∂φ˙ ⇒ z we can rewrite H as: 1 1 J2 M H = r˙2+ r2 z . (1.60) 2 2 r4 − r Then identify the last two terms as the effective potential: 1J2 M U (r) = z . (1.61) eff 2 r2 − r

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.