ebook img

Advanced Machining Processes: Innovative Modeling Techniques PDF

353 Pages·2017·11.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Machining Processes: Innovative Modeling Techniques

Advanced Machining Processes Manufacturing Design and Technology Series Series Editor J. Paulo Davim   PUBLISHED Advanced Machining Processes: Innovative Modeling Techniques Angelos P. Markopoulos and J. Paulo Davim Additive Manufacturing and Optimization: Fundamentals and Applications V. Vijayan, Suresh B. Kumar, and J. Paulo Davim Technological Challenges and Management: Matching Human and Business Needs Carolina Machado and J. Paulo Davim Drills: Science and Technology of Advanced Operations Viktor P. Astakhov Advanced Machining Processes Innovative Modeling Techniques Edited by Angelos P. Markopoulos J. Paulo Davim MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-03362-7 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Markopoulos, Angelos P., 1976- author. | Davim, J. Paulo, author. Title: Advanced machining processes : innovative modeling techniques / Angelos P. Markopoulos, J. Paulo Davim. Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2017] | Series: Manufacturing design & technology | Includes bibliographical references. Identifiers: LCCN 2017026510| ISBN 9781138033627 (hardback : acid-free paper) | ISBN 9781315305271 (ebook) Subjects: LCSH: Machine-tools--Numerical control | Machining--Data processing. Classification: LCC TJ1189 .M289 2017 | DDC 671.3/5011--dc23 LC record available at https://lccn.loc.gov/2017026510 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 Contents © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works List of figures ���������������������������������������������������������������������������������������������������vii Printed on acid-free paper List of tables ���������������������������������������������������������������������������������������������������xvii Preface ���������������������������������������������������������������������������������������������������������������xix International Standard Book Number-13: 978-1-138-03362-7 (Hardback) Editors ���������������������������������������������������������������������������������������������������������������xxi This book contains information obtained from authentic and highly regarded sources. Reasonable efforts Contributors ��������������������������������������������������������������������������������������������������xxiii have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has Chapter 1 A particle finite element method applied to modeling not been acknowledged please write and let us know so we may rectify in any future reprint. and simulation of machining processes ................................1 Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- Juan Manuel Rodríguez, Pär Jonsén, and Ales Svoboda ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, Chapter 2 Smoothed particle hydrodynamics for modeling without written permission from the publishers. metal cutting ..............................................................................25 For permission to photocopy or use material electronically from this work, please access www.copyright. Mohamed N.A. Nasr com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, Chapter 3 Failure analysis of carbon fiber reinforced polymer a separate system of payment has been arranged. multilayer composites during machining process .............51 Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used Sofiane Zenia and Mohammed Nouari only for identification and explanation without intent to infringe. Chapter 4 Numerical modeling of sinker electrodischarge Library of Congress Cataloging-in-Publication Data machining processes ................................................................81 Names: Markopoulos, Angelos P., 1976- author. | Davim, J. Paulo, author. Carlos Mascaraque-Ramírez and Patricio Franco Title: Advanced machining processes : innovative modeling techniques / Angelos P. Markopoulos, J. Paulo Davim. Chapter 5 Modeling of interaction between precision Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic machining process and machine tools ...............................107 division of T&F Informa, plc, [2017] | Series: Manufacturing design & Wanqun Chen and Dehong Huo technology | Includes bibliographical references. Identifiers: LCCN 2017026510| ISBN 9781138033627 (hardback : acid-free paper) | ISBN 9781315305271 (ebook) Chapter 6 Large-scale molecular dynamics simulations of Subjects: LCSH: Machine-tools--Numerical control | Machining--Data processing. nanomachining .......................................................................141 Classification: LCC TJ1189 .M289 2017 | DDC 671.3/5011--dc23 Stefan J. Eder, Ulrike Cihak-Bayr, and Davide Bianchi LC record available at https://lccn.loc.gov/2017026510 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at v http://www.crcpress.com vi Contents Chapter 7 Multiobjective optimization of support vector regression parameters by teaching-learning-based optimization for modeling of electric discharge machining responses............................................................179 Ushasta Aich and Simul Banerjee Chapter 8 Modeling of grind-hardening ............................................211 Angelos P. Markopoulos, Emmanouil L. Papazoglou, Nikolaos E. Karkalos, and Dimitrios E. Manolakos Chapter 9 Finite element modeling of mechanical micromachining ....................................................................245 Samad Nadimi Bavil Oliaei and Murat Demiral Chapter 10 Modeling of materials behavior in finite element analysis and simulation of machining processes: Identification techniques and challenges ........................281 Walid Jomaa, Augustin Gakwaya, and Philippe Bocher Index ����������������������������������������������������������������������������������������������������������������319 List of figures Figure 1.1 Remeshing steps in a standard PFEM machining numerical simulation �������������������������������������������������������������������6 Figure 1.2 2D plane strain PFEM model of orthogonal cutting: (a) initial set of particles and (b) initiation of the chip ���������19 Figure 1.3 Intermediate stages of the chip formation: (a) time 8�04 × 10−4 s and (b) time 1�6 × 10−3 s ���������������������������������������19 Figure 1.4 Cutting force and feed force for test case no� 4 ����������������������20 Figure 1.5 Effective plastic strain rate �������������������������������������������������������21 Figure 1.6 Temperature distribution ����������������������������������������������������������22 Figure 1.7 Von Mises stress field ����������������������������������������������������������������22 Figure 2.1 Deformation zones in metal cutting, with the shear plane angle (φ) shown ��������������������������������������������������������������27 Figure 2.2 Concept of FEM� (a) Cantilever beam (physical case) and (b) finite element of a cantilever beam ����������������������������28 Figure 2.3 Lagrangian versus Eulerian meshes—material under shear loading �������������������������������������������������������������������������������29 Figure 2.4 Orthogonal (2D) cutting models, using different FE formulations� (a) Eulerian model, (b) Lagrangian model, and (c) ALE model ��������������������������������������������������������31 Figure 2.5 SPH versus FEM (linear elements)—geometrical representation �����������������������������������������������������������������������������33 Figure 2.6 Smoothing/support domain ����������������������������������������������������34 vii viii List of figures Figure 3.1 Boundary condition and geometry of the tool−workpiece couple ������������������������������������������������������������54 Figure 3.2 Progressive failure analysis of the chip formation with 3D model for 45° fiber orientation� (a) Primary rupture� (b) Secondary rupture and complete chip formation� (c) Experimental result of Iliescu et al� ��������������63 Figure 3.3 Progressive failure analysis of chip formation with 3D model for 90° fiber orientation� (a) Primary rupture� (b) Secondary rupture and complete chip formation� (c) Schematization of the experimental chip formation process by Teti ��������������������������������������������������������������������������64 Figure 3.4 Progressive failure analysis of chip formation with 3D model for −45° fiber orientation� (a) Primary rupture� (b) Secondary rupture and complete chip formation� (c) Schematization of the experimental chip formation process ���������������������������������������������������������������������������������������65 Figure 3.5 Cutting force F obtained during FE simulation c for different fiber orientations with unidirectional composite compared with experimental results (V = 60 m/min, a  = 0�2 mm, α = 0°) ������������������������������������65 c p Figure 3.6 Depth of damage dm obtained during FE simulation for different fiber orientations with unidirectional composite (V = 60 m/min, a  = 0�2 mm, α = 0°) �����������������66 c p Figure 3.7 Effect of tool rake angle on machining forces, V = 60 m/min, a  = 200 µm, R = 15 µm, γ = 11° �������������������67 p Figure 3.8 Effect of tool rake angle on the chip formation process during cutting of CFRP composites and for fiber orientation at 45°: (a) by shear α = 10°, and (b) by buckling α = −5° ����������������������������������������������������������������������68 Figure 3.9 Illustration of the bouncing-back phenomenon ������������������69 Figure 3.10 The effect of clearance angle on machining forces, V = 60 m/min, a  = 200 µm, α = 10°, r = 15 µm�������������������69 p ε Figure 3.11 The effect of tool edge radius on machining forces, V = 60 m/min, a  = 200 µm, α = 10°, γ = 11° �������������������������70 p Figure 3.12 Cutting depth effect on machining forces, V = 60 m/min, r = 15 µm, α = 10°, γ = 11° ����������������������������71 ε Figure 3.13 Cutting depth effect on chip size, V = 60 m/min, r = 15 µm, α = 10°, γ = 11° �������������������������������������������������������72 ε List of figures ix Figure 3.14 Size chip measurement: fiber orientation 45°, V = 60 m/min, r = 15 µm, α = 10°, γ = 11° ����������������������������72 ε Figure 3.15 Cutting depth effect on the damage depth, V = 60 m/min, r = 15 µm, α = 10°, γ = 11° ����������������������������73 ε Figure 3.16 Velocity effect on cutting forces for fiber orientation at 45°: a  = 200 µm, α = 10° ������������������������������������������������������73 p Figure 3.17 Two adjacent layers with interlaminar interface �����������������74 Figure 3.18 Damage of the interface between two adjacent layers, showing the delamination process for four configurations: (a) 45°/0°, (b) 45°/45°, (c) 45°/−45°, and (d) −45°/90° ��������������������������������������������������������������������������������75 Figure 3.19 Steps of hole drilling (a) contact between the tool and the workpiece, (b) material removal, and (c) hole completely drilled ��������������������������������������������������������������������76 Figure 3.20 Comparison between experimental and 3D simulation thrust forces �����������������������������������������������������������77 Figure 3.21 Drill entry delamination: (a) simulation result and (a′) experimental result� Drill exit delamination: (b) simulation result and (b′) experimental result ���������������78 Figure 4.1 Schematic representation of the sinker EDM process ���������84 Figure 4.2 Different states of plasma channel during the EDM process ����������������������������������������������������������������������������������������85 Figure 4.3 Examples of scanning electron microscope (SEM) images for workpiece and electrode in the EDM process: (a) Stainless steel workpiece and (b) copper electrode �������������������������������������������������������������������������������������85 Figure 4.4 Different phases of the EDM processes: (a) Voltage diagram and (b) current intensity diagram ��������������������������87 Figure 4.5 Heat input distribution on the workpiece surface during the EDM process ����������������������������������������������������������88 Figure 4.6 Basic diagram of conduction heat transfer ���������������������������90 Figure 4.7 Dielectric fluid turbulence around the workpiece surface ����������������������������������������������������������������������������������������91 Figure 4.8 Convection heat transfer throughout the dielectric fluid in EDM processes ������������������������������������������������������������92 Figure 4.9 Example of simulation mesh for an EDM process ��������������93

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.