ebook img

Advanced Fluid Dynamics of The Environment- Stokes Flow Past a Sphere PDF

6 Pages·0.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Fluid Dynamics of The Environment- Stokes Flow Past a Sphere

1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, MIT 2-5Stokes.tex 2.5 Stokes (cid:13)ow past a sphere [Refs] Lamb: Hydrodynamics Acheson : Elementary Fluid Dynamics, p. 223 (cid:11) One of the fundamental results in low Reynolds hydrodynamics is the Stokes solution for steady (cid:13)ow past a small sphere. The apllicatiuon range widely form the determination of electron charges to the physics of aerosols. The continuity equation reads r(cid:1)q~ = 0 (2.5.1) With inertia neglected, the approximate momentum equation is rp 0 = (cid:0) +(cid:23)r2~q (2.5.2) (cid:26) Physically, the presssure gradient drives the (cid:13)ow by overcoming viscous resistence, but does a(cid:11)ect the (cid:13)uid inertia signi(cid:12)cantly. Refering to Figure 2.5 for the spherical coordinate system (r;(cid:18);(cid:30)). Let the ambient velocity be upward and along the polar (z) axis: (u;v;w) = (0;0;W). Axial symmetry demands @ = 0; and q~ = (q (r;(cid:18));q (r;(cid:18));0) r (cid:18) @(cid:30) Eq. (2.5.1) becomes 1 @ 1 @ (r2q )+ (q sin(cid:18)) = 0 (2.5.3) r (cid:18) r2@r r@(cid:18) As in the case of rectangular coordinates, we de(cid:12)ne the stream function to satisify the continuity equation (2.5.3) identically 1 @ 1 @ q = ; q = (cid:0) (2.5.4) r (cid:18) r2sin(cid:18) @(cid:18) rsin(cid:18) @r At in(cid:12)nity, the uniform velocity W along z axis can be decomposed into radial and polar components 1 @ 1 @ q = W cos(cid:18) = ; q = (cid:0)W sin(cid:18) = (cid:0) ; r (cid:24) 1 (2.5.5) r (cid:18) r2sin(cid:18) @(cid:18) rsin(cid:18) @r 2 z r q o y f x Figure 2.5.1: The spherical coordinates The corresponding stream function at in(cid:12)nity follows by integration W = r2sin2(cid:18); r (cid:24) 1 (2.5.6) 2 Using the vector identity r(cid:2)(r(cid:2)~q) = r(r(cid:1)~q)(cid:0)r2~q (2.5.7) and (2.5.1), we get r2~q = (cid:0)r(cid:2)(r(cid:2)~q) = (cid:0)r(cid:2)(cid:16)~ (2.5.8) Taking the curl of (2.5.2) and using (2.5.8) we get r(cid:2)(r(cid:2)(cid:16)~) = 0 (2.5.9) After some straightforward algebra given in the Appendix, we can show that ~e ~q = r(cid:2) (cid:30) (2.5.10) rsin(cid:18)! and ~e ~e @2 sin(cid:18) @ 1 @ (cid:16)~ = r(cid:2)q~ = r(cid:2)r(cid:2) (cid:30) = (cid:0) (cid:30) + (2.5.11) rsin(cid:18)! rsin(cid:18) @r2 r2 @(cid:18) sin(cid:18) @(cid:18)!! Now from (2.5.9) ~e r(cid:2)r(cid:2)(r(cid:2)~q) = r(cid:2)r(cid:2) r(cid:2) r(cid:2) (cid:30) = 0 " rsin(cid:18)!# 3 hence, the momentum equation (2.5.9) becomes a scalar equation for . @2 sin(cid:18) @ 1 @ 2 + = 0 (2.5.12) @r2 r2 @(cid:18) sin(cid:18)@(cid:18)!! The boundary conditions on the sphere are q = 0 q = 0 on r = a (2.5.13) r (cid:18) The boundary conditions at 1 is W ! r2sin2(cid:18) (2.5.14) 2 Let us try a solution of the form: (r;(cid:18)) = f(r)sin2(cid:18) (2.5.15) then f is governed by the equi-dimensional di(cid:11)erential equation: d2 2 2 (cid:0) f = 0 (2.5.16) "dr2 r2# whose solutions are of the form f(r) / rn, It is easy to verify that n = (cid:0)1;1;2;4 so that A f(r) = +Br+Cr2 +Dr4 r or A = sin2(cid:18) +Br+Cr2 +Dr4 r (cid:20) (cid:21) To satisfy (2.5.14) we set D = 0;C = W=2. To satisfy (2.5.13) we use (2.5.4) to get W A B A B q = 0 = + + = 0; q = 0 = W (cid:0) + = 0 r (cid:18) 2 a3 a a3 a Hence 1 3 A = Wa3; B = (cid:0) Wa 4 4 Finally the stream function is W a3 3ar = r2 + (cid:0) sin2(cid:18) (2.5.17) 2 " 2r 2 # Inside the parentheses, the (cid:12)rst term corresponds to the uniform (cid:13)ow, and the second term to the doublet; together they represent an inviscid (cid:13)ow past a sphere. The third term is called the Stokeslet, representing the viscous correction. The velocity components in the (cid:13)uid are: (cf. (2.5.4) : a3 3a q = W cos(cid:18) 1+ (cid:0) (2.5.18) r " 2r3 2r# a3 3a q = (cid:0)W sin(cid:18) 1(cid:0) (cid:0) (2.5.19) (cid:18) " 4r3 4r# 4 2.5.1 Physical Deductions 1. Streamlines: With respect to the the equator along (cid:18) = (cid:25)=2, cos(cid:18) and q are odd while r sin(cid:18) and q are even. Hence the streamlines (velocity vectors) are symmetric fore and (cid:18) aft. 2. Vorticity: 1@(rq ) 1@q 3 sin(cid:18) (cid:16)~ = (cid:16) ~e (cid:18) (cid:0) r ~e = (cid:0) Wa ~e (cid:30) (cid:30) (cid:30) (cid:30) r @r r @(cid:18) ! 2 r2 3. Pressure : From the r-component of momentum equation @p (cid:22)Wa = cos(cid:18)(= (cid:0)(cid:22)r(cid:2)(r(cid:2)q~)) @r r3 Integrating with respect to r from r to 1, we get 3(cid:22)Wa p = p1 (cid:0) cos(cid:18) (2.5.20) 2 r3 4. Stresses and strains: 1 @q 3a 3a3 e = r = W cos(cid:18) (cid:0) rr 2 @r 2r2 2r4! On the sphere, r = a, e = 0 hence (cid:27) = 0 and rr rr 3(cid:22)W (cid:28)rr = (cid:0)p+(cid:27)rr = (cid:0)p1 + cos(cid:18) (2.5.21) 2 a On the other hand @ q 1@q 3Wa3 e = r (cid:18) + r = (cid:0) sin(cid:18) r(cid:18) @r r r @(cid:18) 2 r4 (cid:18) (cid:19) Hence at r = a: 3(cid:22)W (cid:28) = (cid:27) = (cid:22)e = (cid:0) sin(cid:18) (2.5.22) r(cid:18) r(cid:18) r(cid:18) 2 a The resultant stress on the sphere is parallel to the z axis. 3(cid:22)W (cid:6)z = (cid:28)rrcos(cid:18)(cid:0)(cid:28)r(cid:18)sin(cid:18) = (cid:0)p1cos(cid:18) + 2 a The constant part exerts a net drag in z direction 2(cid:25) (cid:25) 3(cid:22)W D = ad(cid:30) d(cid:18)sin(cid:18)(cid:6) == 4(cid:25)a2 = 6(cid:25)(cid:22)Wa (2.5.23) z 2 a o o Z Z This is the celebrated Stokes formula. A drag coe(cid:14)cient can be de(cid:12)ned as D 6(cid:25)(cid:22)Wa 24 24 C = = = = (2.5.24) D 1(cid:26)W2(cid:25)a2 1(cid:26)W2(cid:25)a2 (cid:26)W(2a) Re 2 2 (cid:22) d 5 5. Fall velocity of a particle through a (cid:13)uid. Equating the drag and the buoyant weight of the eparticle 4(cid:25) 6(cid:25)(cid:22)W a = a3((cid:26) (cid:0)(cid:26) )g o s f 3 hence 2 a2(cid:1)(cid:26) a2 (cid:1)(cid:26) W = g = 217:8 o 9 (cid:23) (cid:26)f ! (cid:23) (cid:26)f ! in cgs units. For a sand grain in water, (cid:1)(cid:26) 2:5(cid:0)1 = = 1:5; (cid:23) = 10(cid:0)2cm2=s (cid:26) 1 f W = 32;670 a2cm=s (2.5.25) o To have some quantitative ideas, let us consider two sand of two sizes : a = 10(cid:0)2cm = 10(cid:0)4m : W = 3:27cm=s; o a = 10(cid:0)3cm = 10(cid:0)5 = 10(cid:22)m; W = 0:0327cm=s = 117cm=hr o For a water droplet in air, (cid:1)(cid:26) 1 = = 103; (cid:23) = 0:15 cm2=sec (cid:26) 10(cid:0)3 f then (217:8)103 W = a2 (2.5.26) o 0:15 in cgs units. If a = 10(cid:0)3 cm = 10(cid:22)m, then W = 1:452 cm=sec. o Details of derivation Details of (2.5.10). ~e ~e rsin(cid:18)~e 1 r (cid:18) (cid:30) r(cid:2) ~e = @ @ @ rsin(cid:18) (cid:30)! r2sin(cid:18) (cid:12)(cid:12) @r @(cid:18) @(cid:30) (cid:12)(cid:12) (cid:12) 0 0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 @ 1 @ =~e (cid:0)~e r (cid:18) r2sin(cid:18) @(cid:18)! rsin(cid:18) @r! 6 Details of (2.5.11). ~e r(cid:2)r(cid:2) (cid:30) = r(cid:2)~q rsin(cid:18) ~e r~e rsin(cid:18)~e 1 r (cid:18) (cid:30) = @ @ @ r2sin(cid:18) (cid:12)(cid:12)(cid:12) 1@r @ (cid:0)1@(cid:18)@ @0(cid:30) (cid:12)(cid:12)(cid:12) (cid:12) r2sin(cid:18) @(cid:18) sin(cid:18) @r (cid:12) (cid:12) (cid:12) ~e (cid:12)@2(cid:30) sin(cid:18) @ 1 @ (cid:12) = (cid:18) (cid:12) + (cid:12) rsin(cid:18) "@r2 r2 @(cid:18) sin(cid:18) @(cid:18)!#

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.