ebook img

Advanced Fluid Dynamics of The Environment- Equations of Motion in Rotating Coordinates PDF

5 Pages·0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Fluid Dynamics of The Environment- Equations of Motion in Rotating Coordinates

1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, 2002 Chapter 7. Geophysical Fluid Dynamics of Coastal Region [Ref]: Pedlosky Geophysical Fluid Dynamics Springer-Verlag Csanady: Circulation in the Coastal Ocean, Kluwer 7.1 Equations of Motion in Rotating Coordinates Since the earth is rotating about the polar axis, the coordinate system (cid:12)xed on earth is rotating. We need to know how to express the time rate of change of dynamical quantities in the rotating coordinates. A vector (cid:12)xed in the rotating coordinate system is rotating in the (cid:12)xed (inertial) coordi- nate system. Consider therefore a vector rotating in the inertial frame of reference. 7.1.1 Vector of constant magnitude Figure 7.1.1: Vector A~(t) rotating at the angular velocity (cid:10)~. If A~ = A ~e has a constant magnitude but is rotating about an axis at the angular vecloty i i (cid:10)~, what is the rate of change dA~=dt in the (cid:12)xed coordinate (inertial) system? Let dA~ = A~(t+dt)(cid:0)A~(t) From Figure 7.1.1, dA~ d(cid:18) =~ejAj sin (cid:13) ; 0 dt 1 dt I @ A 2 where subscript I signi(cid:12)es "inertial system" and ~e is the unit-vector along dA~. Note ~e ? A~ and ~e ? (cid:10)~. Hence, (cid:10)~ (cid:2)A~ ~e = : ~ ~ j (cid:10)(cid:2)A j and , dA~ (cid:10)~ (cid:2)A~ d(cid:18) = j A~ j sin (cid:13) ; 0 dt 1 j (cid:10)~ (cid:2)A~ j dt I @ A Since d(cid:18) = (cid:10); dt (cid:10)~ (cid:2)A~ j= (cid:10) j A~ j sin (cid:13): it follows that dA~ ~ ~ = (cid:10)(cid:2)A: (7.1.1) 0 dt 1 I @ A In particular, let A~ =~e ;i = 1;2;3 be a base vector in the rotating frame of reference, i A~ =~e 6=~e i Then d~e i ~ = (cid:10)(cid:2)~e : (7.1.2) i dt (cid:12) (cid:12)I (cid:12) (cid:12) (cid:12) 7.1.2 A vector of variable magnitude Let B~ = B ~e i i be any non-constant vector in the rotating frame, and let dB~ dB i = ~e i 0 dt 1 dt R @ A denote its rate of change in the rotating frame. then dB~ dB d~e dB~ dB~ = i ~e +B i = +B (cid:10)~ (cid:2)~e = +(cid:10)~ (cid:2)B~: (7.1.3) i i i i 0 dt 1 dt dt 0 dt 1 0 dt 1 I R R @ A @ A @ A In particular, if B~ =~r is the position of a (cid:13)uid particle d~r d~r = +(cid:10)~ (cid:2)~r; dt(cid:12) dt(cid:12) (cid:12)I (cid:12)R (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 3 Note that ~r is the same in any coordinate system. Now (d~r=dt) is the velocity seen in the I inertial frame of reference and (d~r=dt) is the velocity seen in the rotatingframe ofreference, R i.e., q~ = ~q +(cid:10)~ (cid:2)~r; (7.1.4) I R Next we let ~q be the velocity vector of (cid:13)uid in the rotating frame of reference; its rates R of change in the two frames of reference are related by d~q d~q R = R +(cid:10)~ (cid:2)~q : (7.1.5) R dt (cid:12) dt (cid:12) (cid:12)I (cid:12)R (cid:12) (cid:12) Taking the time derivative of (7.1.4), (cid:12)and assum(cid:12) ing that the angular acceleration of earth to (cid:12) (cid:12) be zero, d(cid:10)~ = 0 dt we get d~q d~q d~r I = R +(cid:10)~ (cid:2) dt ! dt ! dt! I I I d~q d~r = R +(cid:10)~ (cid:2)~q +(cid:10)~ (cid:2) +(cid:10)~ (cid:2)~r R dt ! " dt! # R R d~q R ~ ~ ~ = + 2(cid:10)(cid:2)~q +(cid:10)(cid:2)((cid:10)(cid:2)~r) (7.1.6) R dt ! R Coriolis acc. centripetal | {z } | {z } Figure 7.1.2: Coriolis force, position vector and angular velocity ~ The second term on the right is the Coriolis force, being perpendicular to both ~q and (cid:10). The last term represents the centripetal force (cid:10)~ (cid:2)((cid:10)~ (cid:2)~r) = (cid:0)j(cid:10)j2r~?; See Figure 7.1.2 for the geometric relations. The centripetal force may be written in terms of a centripetal force potential (cid:30) where c 1 1 (cid:30) = ((cid:10)~ (cid:2)~r)(cid:1)((cid:10)~ (cid:2)~r) = j(cid:10)j2r2: (7.1.7) c ? 2 2 4 so that d(cid:30) c 2 (cid:0)r(cid:30)c = (cid:0) ~e? = (cid:0)j(cid:10)j r~?; (7.1.8) dr? 7.1.3 Summary of governing equations in rotating frame of refer- ence: Continuity: r(cid:1)q~ = 0 (7.1.9) In the coordinate system rotating at the constant angular velocity, the momentum equation reads, after dropping subscripts R d~q (cid:26) +2(cid:10)~ (cid:2)q~ = (cid:0)rp+(cid:26)r((cid:30) +(cid:30) )+(cid:22)r2q~ (7.1.10) g c dt ! where 1 ~ ~ (cid:30) = gz (cid:30) = (cid:10)(cid:2)~r (cid:1) (cid:10)(cid:2)~r g c 2 (cid:16) (cid:17) (cid:16) (cid:17) 7.1.4 Dimensionless parameters @q~ O U 1 @t = T = O 2(cid:10)(cid:2)q~ (cid:10)(cid:16)U(cid:17) (cid:10)T (cid:18) (cid:19) 2 q~(cid:1)r~q U =L U = = = Rossby number 2(cid:10)~ (cid:2)~q 2(cid:10)U 2(cid:10)L 2 2 (cid:23)r q~ (cid:23)U=L (cid:23) = = = Ekman number 2(cid:10)(cid:2)q~ 2(cid:10)U 2(cid:10)L2 r(cid:30) = ~g g 2 r(cid:30) = (cid:10) ~r c L 1 (cid:0)5 (cid:0)1 For numerical estimate, we take (cid:10) = = 2:31(cid:2)10 s and r = earth radius = 6400 12 hrs 2 (cid:0)5 2 6 (cid:0)3 2 2 km. Then ! r (cid:24) (2:31(cid:2)10 ) (cid:2) 6:4 (cid:2) 10 (cid:24) 3 (cid:2) 10 m/s while g (cid:24) 10m/s . Hence 2 g (cid:29) (cid:10) r; gravity is more important than centripetal force. 7.1.5 Coriolis force Refering to the right of Figure 7.1.3 (cid:10)~ =~i((cid:0)(cid:10)cos(cid:18))+~j(0)+~k((cid:10)sin(cid:18)) Introducing the spherical polar coordinates as in the left of Figure Refering to the right of Figure 7.1.3, with (cid:18) being the latitude. The Coriolis force is 5 Figure 7.1.3: The Northern hemisphere. ~i ~j ~k 2(cid:10)~ (cid:2)q~ = (cid:0)2(cid:10)cos(cid:18) o 2(cid:10)sin(cid:18) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) u v w (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) = ~i ((cid:0)2(cid:10)vsin(cid:18))+(cid:12) ~j (2(cid:10)usin(cid:18)+2(cid:10)wcos(cid:18))+~k ((cid:0)(cid:12)2(cid:10)vcos(cid:18)) Consider shallow waters where the depth D is much less than the horizontal length L, i.e., D (cid:28) L, and compare the two terms in the y direction of (~j) 2(cid:10)wcos(cid:18) w D = cot(cid:18) = O cot(cid:18) (cid:28) 1 2(cid:10)usin(cid:18) u L (cid:18) (cid:19) except along the equator where (cid:18) = 0 ~ In the z direction of (k), (cid:0)2(cid:10)vcos(cid:18) (cid:0)2(cid:10)ucos(cid:18) D (cid:0)2(cid:10)ucos(cid:18) D = = = O (cid:28) 1 1@dp L @pd L max U; U2;(cid:10)U L (cid:26) @z D @x T L (cid:18) (cid:19) (cid:16) (cid:17) Hence in shallow seas 2(cid:10)~ (cid:2)~q (cid:24)=~i((cid:0)2(cid:10)vsin(cid:18))+~j(2(cid:10)usin(cid:18)) De(cid:12)ne f = 2(cid:10)sin(cid:18) (7.1.11) to be the Coriolis parameter, then 2(cid:10)~ (cid:2)~q = (cid:0)fv~i+fu~j (7.1.12) In the northern hemisphere, 0 < (cid:18) < (cid:25)=2.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.