ebook img

Advanced Calculus of a Single Variable PDF

391 Pages·2016·2.389 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced Calculus of a Single Variable

Tunc Geveci Advanced Calculus of a Single Variable Advanced Calculus of a Single Variable Tunc Geveci Advanced Calculus of a Single Variable 123 TuncGeveci DepartmentofMathematicsandStatistics SanDiegoStateUniversity SanDiego,CA,USA ISBN978-3-319-27806-3 ISBN978-3-319-27807-0 (eBook) DOI10.1007/978-3-319-27807-0 LibraryofCongressControlNumber:2015959713 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternational PublishingAGSwitzerlandispartofSpringerScience+Business Media(www. springer.com) DedicatedtoSimla Mugeand Zehra Preface Thisbookisbasedonaone-semestersinglevariableadvancedcalculuscoursethat I have been teaching at San Diego State University for many years. Mathematics departmentsinmanyschoolsoffersuchacourse.Theaimisarigorousdiscussion oftheconceptsandtheoremsthataredealtwithinformallyinthefirsttwosemesters of a beginning calculus course. As such, students are expected to gain a deeper understandingof the fundamentalconceptsof calculus, such as limits, continuity, thederivativeandtheRiemannintegral.Successinthiscourseisexpectedtoprepare themformoreadvancedcoursesinrealandcomplexanalysis. The first semester of advanced calculus can be followed by a rigorous course in multivariable calculus and an introductory real analysis course that treats the Lebesgueintegralandmetricspaces,withspecialemphasisonBanachandHilbert spaces.Ibelievethateachcourserequiresaseparatetext. Chapter1beginswithaquickreviewofthepropertiesofthesetofrealnumbers asanorderedfield.Theconceptofthelimitofasequenceandtherelevantrulesare discussedrigorously.Thecompletenessofthefieldofrealnumbersisintroducedas theexistenceofthelimitofaCauchysequence.Ibelievethatthisisbetterthanthe introductionofthenotionofcompletenessviatheexistenceoftheleastupperbound of a subset of real numbers that is bounded above. After all, students have been dealing with Cauchy sequences in the form of decimal approximationsall along. Anaddedadvantageis thefactthatthenotionofcompletenessastheexistenceof thelimitofaCauchysequenceappearstimeandagainwithinthegeneralframework ofametricspacethatmaynothaveanorderrelation,asinthecasesofthefieldof complexnumbers,Banach or Hilbert spaces. The least upper boundprinciple and thespecialnatureoftheconvergenceordivergenceofamonotonesequencearealso treatedinChapter1.Thenotionofaninfinitelimitisdiscussedcarefullysincethe convenientsymbol1canbemisunderstoodandmistreatedbythestudent. Chapter2discussesthecontinuityandlimitsoffunctions.Ihavechosentolimit thediscussiontofunctionsdefinedonintervals.Ibelievethatthepointsettopology ofmoregeneralsetsbelongstoamoreadvancedrealanalysiscourse.Manystudents encounter serious difficulties in the transition from informal to rigorous calculus anyway. vii viii Preface I emphasizethe "-ı definitions. Such emphasisis essentialfor the appreciation of the difference between mere pointwise continuity and uniform continuity on a set. One of the highlights of the chapter is the Intermediate Value Theorem that hasbearingonthedefinitionsofbasicinversefunctionsthatfigureprominentlyin beginningcalculus. Chapter 3 takes up the derivative. The emphasis is on the nature of the error in local linear approximations to functions. That renders a rigorous proof of the celebrated chain rule quite straightforward. The student is also prepared for the generalization of the concept of the derivative to functions of more than a single real variable, even to functions between normed vector spaces. I have included a detaileddiscussionofconvexityasaniceapplicationoftheMeanValueTheorem. RigorousproofsofvariousversionsofL’Hôpital’srulearenotneglected. Chapter 4 is on the Riemann integral. Integrability criteria in terms of upper andlowersumsandtheoscillationofafunctionarediscussed.Thetwoapproaches complementeachother.Iestablishthelinkwiththeusualintroductionoftheintegral via arbitrary Riemann sums in a beginning calculus course, unlike some popular advanced calculus texts that neglect to mention that connection as if a new type of integral is being discussed. I have included a detailed discussion of improper integrals,includingthecomparisonandDirichlettests.Someofthemostimportant improperintegralsthatare encounteredin practicerequiresuch tests. I emphasize Cauchy-typecriteriafortheconvergenceofanimproperintegral. Chapter5isareviewofaseriesofrealnumbers.Ichosetoprovidedetailssince thistopicchallengesstudentsinabeginningcalculuscoursewhererigorousproofs arenotprovided.IemphasizeCauchy-typecriteriafortheconvergenceofseries. Chapter6discussestheconvergenceofsequencesandseriesofreal-valuedfunc- tionsonintervals.Thedistinctionbetweenmerepointwiseanduniformconvergence is emphasized, with ample examples. The nice behavior of sequences and series of functions with respect to integration and differentiation are not valid unless certain uniform convergenceconditions are satisfied. The analyticity of functions definedviapowerseriesfollowssmoothlyoncetheappropriatefoundationinvolving uniformconvergenceisestablished.Thechapterisconcludedwiththedefinitionof familiarspecialfunctionsviapowerseries. Thisbookisanundergraduatetextandnotamonographonaspecialtopic.My writing has been inspired and influenced by a variety of authors over many years sincemyinitialencounterwithanalysisasastudent.Ihavebeenfortunatetohave hadteacherssuchasStefanWarschawski,ErrettBishop,andWilliamF.Lucas.The followingisashortlistofbooksthatarerelevanttothewayItreatedthetopicsthat areincludedinthisbook(excellentclassicaltextsinthisclassicalsubject): 1. IntroductiontoCalculusandAnalysis,Vol.1,byRichardCourantandFritzJohn, Springer,1998 2. TheoryandApplicationofInfiniteSeries,byKonradKnopp,Dover,1990 3. The Elements of Real Analysis, Second Edition, by Robert G. Bartle, Wiley, 1976 SanDiego,CA,USA TuncGeveci Contents 1 RealNumbers,Sequences,andLimits..................................... 1 1.1 TerminologyandNotation.............................................. 1 1.1.1 SetTheoreticTerminologyandNotation...................... 1 1.1.2 Functions........................................................ 3 1.2 RealNumbers........................................................... 7 1.2.1 RulesofArithmetic............................................. 7 1.2.2 TheOrderAxioms.............................................. 9 1.2.3 TheNumberLine............................................... 11 1.2.4 TheAbsoluteValueandtheTriangleInequality.............. 12 1.2.5 TheArchimedeanPropertyofR............................... 16 1.2.6 Problems ........................................................ 17 1.3 TheLimitofaSequence................................................ 19 1.3.1 TheDefinitionoftheLimitofaSequence .................... 19 1.3.2 TheLimitsofCombinationsofSequences.................... 24 1.3.3 Problems ........................................................ 29 1.4 TheCauchyConvergenceCriterion.................................... 30 1.4.1 BasicFactsaboutCauchySequences.......................... 30 1.4.2 IrrationalNumbersAreUncountable.......................... 37 1.4.3 Problems ........................................................ 41 1.5 TheLeastUpperBoundPrinciple...................................... 42 1.5.1 TheLeastUpperBoundPrinciple ............................. 42 1.5.2 MonotoneSequences........................................... 46 1.5.3 Problems ........................................................ 52 1.6 InfiniteLimits........................................................... 53 1.6.1 TheDefinitionoftheInfiniteLimit............................ 53 1.6.2 PropositionsfortheEvaluationofInfiniteLimits............. 55 1.6.3 Problems ........................................................ 59 2 LimitsandContinuityofFunctions........................................ 61 2.1 Continuity ............................................................... 61 2.1.1 TheDefinitionofContinuity................................... 61 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.