ebook img

Advanced book on Mathematics Olympiad PDF

807 Pages·2007·5.34 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Advanced book on Mathematics Olympiad

Putnam and Beyond Ra˘zvan Gelca Titu Andreescu Putnam and Beyond Ra˘zvanGelca TituAndreescu TexasTechUniversity UniversityofTexasatDallas DepartmentofMathematicsandStatistics SchoolofNaturalSciencesandMathematics MA229 2601NorthFloydRoad Lubbock,TX79409 Richardson,TX75080 USA USA [email protected] [email protected] CoverdesignbyMaryBurgess. LibraryofCongressControlNumber:2007923582 ISBN-13:978-0-387-25765-5 e-ISBN-13:978-0-387-68445-1 Printedonacid-freepaper. (cid:1)c2007SpringerScience+BusinessMedia,LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthepublisher(SpringerScience+BusinessMediaLLC,233SpringStreet,NewYork,NY10013,USA)andthe author,exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformof informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,eveniftheyarenotidentified assuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights. 9 8 7 6 5 4 3 2 1 springer.com (JLS/HP) Lifeisgoodforonlytwothings,discovering mathematicsandteachingmathematics. SiméonPoisson Contents Preface ............................................................ xi AStudyGuide ...................................................... xv 1 MethodsofProof ................................................ 1 1.1 ArgumentbyContradiction ...................................... 1 1.2 MathematicalInduction ......................................... 3 1.3 ThePigeonholePrinciple........................................ 11 1.4 OrderedSetsandExtremalElements .............................. 14 1.5 InvariantsandSemi-Invariants ................................... 19 2 Algebra ........................................................ 25 2.1 IdentitiesandInequalities ....................................... 25 2.1.1 AlgebraicIdentities....................................... 25 2.1.2 x2 ≥ 0.................................................. 28 2.1.3 TheCauchy–SchwarzInequality............................ 32 2.1.4 TheTriangleInequality ................................... 36 2.1.5 TheArithmeticMean–GeometricMeanInequality............. 39 2.1.6 Sturm’sPrinciple......................................... 42 2.1.7 OtherInequalities ........................................ 45 2.2 Polynomials................................................... 45 2.2.1 AWarmup .............................................. 45 2.2.2 Viète’sRelations ......................................... 47 2.2.3 TheDerivativeofaPolynomial............................. 52 2.2.4 TheLocationoftheZerosofaPolynomial ................... 54 2.2.5 IrreduciblePolynomials ................................... 56 2.2.6 ChebyshevPolynomials ................................... 58 viii Contents 2.3 LinearAlgebra................................................. 61 2.3.1 OperationswithMatrices .................................. 61 2.3.2 Determinants ............................................ 63 2.3.3 TheInverseofaMatrix ................................... 69 2.3.4 SystemsofLinearEquations ............................... 73 2.3.5 VectorSpaces,LinearCombinationsofVectors,Bases ......... 77 2.3.6 LinearTransformations,Eigenvalues,Eigenvectors ............ 79 2.3.7 TheCayley–HamiltonandPerron–FrobeniusTheorems ........ 83 2.4 AbstractAlgebra ............................................... 87 2.4.1 BinaryOperations........................................ 87 2.4.2 Groups ................................................. 90 2.4.3 Rings .................................................. 95 3 RealAnalysis ................................................... 97 3.1 SequencesandSeries ........................................... 98 3.1.1 SearchforaPattern....................................... 98 3.1.2 LinearRecursiveSequences ............................... 100 3.1.3 LimitsofSequences ...................................... 104 3.1.4 MoreAboutLimitsofSequences ........................... 111 3.1.5 Series .................................................. 117 3.1.6 TelescopicSeriesandProducts ............................. 120 3.2 Continuity,Derivatives,andIntegrals ............................. 125 3.2.1 LimitsofFunctions....................................... 125 3.2.2 ContinuousFunctions..................................... 128 3.2.3 TheIntermediateValueProperty............................ 131 3.2.4 DerivativesandTheirApplications.......................... 134 3.2.5 TheMeanValueTheorem ................................. 138 3.2.6 ConvexFunctions ........................................ 142 3.2.7 IndefiniteIntegrals ....................................... 147 3.2.8 DefiniteIntegrals......................................... 150 3.2.9 RiemannSums .......................................... 153 3.2.10 InequalitiesforIntegrals................................... 156 3.2.11 TaylorandFourierSeries .................................. 159 3.3 MultivariableDifferentialandIntegralCalculus..................... 167 3.3.1 PartialDerivativesandTheirApplications.................... 167 3.3.2 MultivariableIntegrals .................................... 174 3.3.3 TheManyVersionsofStokes’Theorem...................... 179 3.4 EquationswithFunctionsasUnknowns............................ 185 3.4.1 FunctionalEquations ..................................... 185 3.4.2 OrdinaryDifferentialEquationsoftheFirstOrder ............. 191 Contents ix 3.4.3 OrdinaryDifferentialEquationsofHigherOrder .............. 195 3.4.4 ProblemsSolvedwithTechniquesofDifferentialEquations ..... 198 4 GeometryandTrigonometry ...................................... 201 4.1 Geometry..................................................... 201 4.1.1 Vectors ................................................. 201 4.1.2 TheCoordinateGeometryofLinesandCircles................ 206 4.1.3 ConicsandOtherCurvesinthePlane........................ 212 4.1.4 CoordinateGeometryinThreeandMoreDimensions .......... 219 4.1.5 IntegralsinGeometry..................................... 225 4.1.6 OtherGeometryProblems ................................. 228 4.2 Trigonometry.................................................. 231 4.2.1 TrigonometricIdentities ................................... 231 4.2.2 Euler’sFormula.......................................... 235 4.2.3 TrigonometricSubstitutions................................ 238 4.2.4 TelescopicSumsandProductsinTrigonometry ............... 242 5 NumberTheory ................................................. 245 5.1 Integer-ValuedSequencesandFunctions........................... 245 5.1.1 SomeGeneralProblems................................... 245 5.1.2 Fermat’sInfiniteDescentPrinciple.......................... 248 5.1.3 TheGreatestIntegerFunction .............................. 250 5.2 Arithmetic .................................................... 253 5.2.1 FactorizationandDivisibility .............................. 253 5.2.2 PrimeNumbers .......................................... 254 5.2.3 ModularArithmetic....................................... 258 5.2.4 Fermat’sLittleTheorem................................... 260 5.2.5 Wilson’sTheorem........................................ 264 5.2.6 Euler’sTotientFunction................................... 265 5.2.7 TheChineseRemainderTheorem........................... 268 5.3 DiophantineEquations.......................................... 270 5.3.1 LinearDiophantineEquations .............................. 270 5.3.2 TheEquationofPythagoras................................ 274 5.3.3 Pell’sEquation .......................................... 276 5.3.4 OtherDiophantineEquations............................... 279 6 CombinatoricsandProbability .................................... 281 6.1 CombinatorialArgumentsinSetTheoryandGeometry............... 281 6.1.1 SetTheoryandCombinatoricsofSets ....................... 281 6.1.2 Permutations ............................................ 283 6.1.3 CombinatorialGeometry .................................. 286 x Contents 6.1.4 Euler’sFormulaforPlanarGraphs .......................... 289 6.1.5 RamseyTheory .......................................... 291 6.2 BinomialCoefficientsandCountingMethods....................... 294 6.2.1 CombinatorialIdentities................................... 294 6.2.2 GeneratingFunctions ..................................... 298 6.2.3 CountingStrategies....................................... 302 6.2.4 TheInclusion–ExclusionPrinciple .......................... 308 6.3 Probability .................................................... 310 6.3.1 EquallyLikelyCases ..................................... 310 6.3.2 EstablishingRelationsAmongProbabilities .................. 314 6.3.3 GeometricProbabilities ................................... 318 Solutions MethodsofProof.................................................... 323 Algebra............................................................ 359 RealAnalysis ....................................................... 459 GeometryandTrigonometry.......................................... 603 NumberTheory..................................................... 673 CombinatoricsandProbability ........................................ 727 IndexofNotation ................................................... 791 Index.............................................................. 795 Preface Aproblembookatthecollegelevel. AstudyguideforthePutnamcompetition. Abridge betweenhighschoolproblemsolvingandmathematicalresearch. Afriendlyintroduction tofundamentalconceptsandresults. Allthesedesiresgavelifetothepagesthatfollow. TheWilliamLowellPutnamMathematicalCompetitionisthemostprestigiousmath- ematics competition at the undergraduate level in the world. Historically, this annual event began in 1938, following a suggestion of William Lowell Putnam, who realized themeritsofanintellectualintercollegiatecompetition. Nowadays,over2500students frommorethan300collegesanduniversitiesintheUnitedStatesandCanadatakepart in it. The name Putnam has become synonymous with excellence in undergraduate mathematics. UsingthePutnamcompetitionasasymbol, welaythefoundationsofhighermath- ematics from a unitary, problem-based perspective. As such, Putnam and Beyond is a journey through the world of college mathematics, providing a link between the stim- ulating problems of the high school years and the demanding problems of scientific investigation. Itgivesmotivatedstudentsachancetolearnconceptsandacquirestrate- gies,honetheirskillsandtesttheirknowledge,seekconnections,anddiscoverrealworld applications. Itsultimategoalistobuildtheappropriatebackgroundforgraduatestudies, whetherinmathematicsorappliedsciences. Ourpointofviewisthatinmathematicsitismoreimportanttounderstandwhythan toknowhow. Becauseofthisweinsistonproofsandreasoning. Afterall,mathematics means, as the Romanian mathematician Grigore Moisil once said, “correct reasoning.’’ Thewaysofmathematicalthinkingareuniversalintoday’sscience. Putnam and Beyond targets primarily Putnam training sessions, problem-solving seminars,andmathclubsatthecollegelevel,fillingagapintheundergraduatecurriculum. But it does more than that. Written in the structured manner of a textbook, but with strongemphasisonproblemsandindividualwork,itcoverswhatwethinkarethemost importanttopicsandtechniquesinundergraduatemathematics,broughttogetherwithin the confines of a single book in order to strengthen one’s belief in the unitary nature of

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.