Hong Hocheng Hung-Yin Tsai Editors Advanced Analysis of Nontraditional Machining Advanced Analysis of Nontraditional Machining Hong Hocheng (cid:129) Hung-Yin Tsai Editors Advanced Analysis of Nontraditional Machining Editors HongHocheng Hung-YinTsai DepartmentofPowerMechanical DepartmentofPowerMechanical Engineering Engineering NationalTsingHuaUniversity NationalTsingHuaUniversity Hsinchu,TaiwanR.O.C. Hsinchu,TaiwanR.O.C. ISBN978-1-4614-4053-6 ISBN978-1-4614-4054-3(eBook) DOI10.1007/978-1-4614-4054-3 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012953517 #SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Machiningisamongthemostancientmanufacturingtechnologieshumanbeinghas employed to advance the civilization. The forms and shapes of a part can be precisely produced. Along with the progress of industry, such as aerospace, elec- tronics, and biomedicine, new functional materials have been developed and applied thanks to their superior mechanical, thermal, chemical, or electrical properties. Nonconventional machining processes have responded to the changes and sprouted in the time frame of the after-World War II booming, including the electricaldischargemachining,electrochemicalmachining,lasermachining,ultra- sonic machining, and the latest chemical mechanical polishing. These processes have answered many manufacturing challenges of the modern industry using advancedmaterials.Ingeneral,conventionalmachiningreferstothedirectcontact of tool and workpiece, while mostly nontraditional machining processes do not necessarilyusemechanicalenergytoprovidematerialremoval.Therefore,notonly hard,strong,ortoughworkpiecematerialcanbeprocessedbutalsoworkpiecethat is too flexible to resist cutting forces can be machined by a proper nontraditional machiningprocess.Foraconditionthatthetemperatureriseorresidualstressesare unacceptable or part shape is very complex with external or internal profiles or smallholes,nontraditionalmachiningisoftenasolution.Inaddition,therearesome advantages of nontraditional machining: high accuracy and surface finish, less or evennowear,mostlyquietoperation,andlongtoollife. The dissemination of this technology is essential for the industry. However, limited number of books can be found in the international community. Besides, these books are of the introductory nature or handbook. Compared to other disciplines in manufacturing sector, such as traditional metal machining, metal forming, casting, welding, automation, etc., the gap of the advanced knowledge ofnontraditionalmachininghasyettobefilled.Thisbookpartiallyfillsthisgapby documentingthelatestandfrequentlycitedresearchresultsofafewkeynontradi- tionalmachiningprocessesforthemostconcernedtopicsinindustrialapplications, suchaslasermachining,electricaldischargemachining,electropolishingofdieand mold, and wafer processing for integrated circuit manufacturing. For effective utilizationofthecapabilitiesofdifferentnontradtionalmachiningprocesses,there v vi Preface is a need to experimentally or analytically understand different machining pro- cesseswhenaparticularshapefeatureistobegeneratedonagivenworkmaterial. Thereareeightchaptersincludedinthisbook.InChap.1,thelasermachining- inducedformationofanisotropicheataffectedzonesinfiber-reinforcedplasticsis discussed.InChap.2,theauthorsoutlinemachiningcharacteristicsofcarbonfiber- reinforcedcarboncompositesandEDM-machinedAISID2toolsteel.Aprocessto erode a hole of hundreds of microns diameter in a metal surface using a moving electrode in electrochemical machining system and the surface roughness of the electropolished internal and external cylindrical surfaces by different electrode designsarediscussedinChap.3.InChap.4,amodelofthematerialremovalrate and endpoint monitoring methods are proposed for chemical mechanical planarization.Further,avisualizedcharacterizationoftheamountanddistribution ofthefluidfilmofsurrybetweenwaferandpadisanalyzedbydigitalphotographs. In Chap. 5, the authors discuss online tool-wear monitoring during ultrasonic machining, the effect of abrasive and drilling parameters on material removal rate, holeclearance, edgequality,toolwear, andsurface roughnessofcomposites forapplicationinthemanufacturingindustry.InChap.6,ananalyticalapproachto study the delamination during drilling by water jet piercing is presented. In addi- tion, the feasibility of milling of composite materials and the kerf formation of a ceramic plate cut by an abrasive waterjet are discussed. A laser dragging process capableofablatingagroovepattern,andproducingsophisticated3Dfeatures,ona polycarbonate sheet through a shaped mask opening is analyzed in Chap. 7. The same chapter also introduces a sub-micron-structure machining on silicon substratesbyadirectwritingsystemusingafemtosecondlaser.Finally,themodern andemergingtechnologiesrelatedtonano-structuremachiningbyionandelectron beamsaredevelopedinChap.8. Theauthorswishthereadersanenjoyableandfruitfulreadingthroughthebook. Hsinchu,TaiwanR.O.C HongHocheng Hsinchu,TaiwanR.O.C Hung-YinTsai Contents 1 LaserMachininganditsAssociatedEffects. . . . . . . . . . . . . . . . . . . 1 C.T.PanandH.Hocheng 2 ElectricalDischargeMachining. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Y.H.GuuandH.Hocheng 3 ElectrochemicalMachining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 P.S.PaandH.Hocheng 4 ChemicalMechanicalPolishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 H.Y.Tsai,H.Hocheng,andY.L.Huang 5 UltrasonicMachining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 K.L.Kuo,H.Hocheng,andC.C.Hsu 6 WaterJetMachining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 H.Hocheng,H.Y.Tsai,andK.R.Chang 7 MicromachiningbyPhotonicBeams. . . . . . . . . . . . . . . . . . . . . . . . 403 H.Y.Tsai,H.Hocheng,K.Y.Wang,andS.W.Luo 8 MaterialShapingbyIonandElectronNanobeams. . . . . . . . . . . . . 453 J.Melngailis Erratum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 vii Chapter 1 Laser Machining and its Associated Effects C.T.PanandH.Hocheng Abstract Laser machining has a wide range of industrial applications. However, laserenergycancausethermaldamage tocompositematerialsduringtheshaping operation following curing. Such damage leads to poor assembly tolerances and reduceslong-termperformance.Inthisstudy,weinvestigatedthelasermachining- induced formation of anisotropic heat-affected zones (HAZs) in fiber-reinforced plastics(FRP).ThedegreeofHAZisestimatedbytheisothermofthematrixchar temperature. Analysis revealed that both the laser energy per unit length and the fiber orientation-dependent thermal conductivity are key factors in determining the extent of HAZ. An experimental measurement ofanisotropic thermal conduc- tivityforcompositematerialsisdeveloped.Heatconductionisgreateralongfibers than it is across a fiber section, thus laser scanning direction relative to fiber orientation affects the HAZ geometry. The study also investigated the principal- axis and nonprincipal-axis grooving of unidirectional (UD), [0/90], Mat, and MatUD laminates. An analytical model based on a moving point heat source using the Mirror Image Method and immersed heat source to model principal- axis grooving is adopted to correlate HAZ anisotropy with various process parameters.Finitedifferencemethod(FDM)withanisothermconductivitymodel andeigenvaluemethodisappliedtosimulatetheHAZresultingfromnonprincipal- axisgrooving. Keywords Laser•Heat-affectedzone•Anisotropicheatconduction•Composite materials C.T.Pan(*) DepartmentofMechanicalandElectro-MechanicalEngineering,NationalSunYat-Sen University,No.70,LienhaiRoad,Kaohsiung80424,Taiwan,ROC e-mail:[email protected];[email protected] H.Hocheng DepartmentofPowerMechanicalEngineering,NationalTsingHuaUniversity, Hsinchu,Taiwan,ROC H.HochengandH.-Y.Tsai(eds.),AdvancedAnalysisofNontraditionalMachining, 1 DOI10.1007/978-1-4614-4054-3_1,#SpringerScience+BusinessMediaNewYork2013 2 C.T.PanandH.Hocheng 1.1 Introduction In general, laser machining produces parts with higher dimensional accuracy and surface quality as well as higher material removal rates than those produced with conventional processes. Materials that can be machined by laser include metals, ceramics, plastics, composites, wood, glass, rubber, and fiber-reinforced plastics(FRP). Theliteratureincludeslasermachining, heat-affectedzone, thermalconductiv- ity,andmoving-sourceheattransfer,assurveyedinthefollowing. 1.1.1 Laser Machining Applications Laserdrillingcanproduceholesassmallas0.05mmindiameterinworkpiece.Itis used in industry for producing holes in turbine blades, combustion chambers, and aerosolnozzle.Lasercuttingisusedtoproduceintricatetwo-dimensionalshapesin workpiece made of materials such as sheet metal and paper with high cutting speeds. Investigations of the potential application of CO laser have been 2 performedonlaserdrillingandcuttingforKevlar/Epoxy[1]. Laserscribinghasbeenusedtocreatechannelsinceramicsubstratesforcooling and identification labels in finished parts. Evaporative removal of material is achieved by focusing a high power and highly concentrated Gaussian laser beam of continuous and pulsed laser onto the surface of the solid [2]. Material removal mechanismisthefundamentforthesophisticatedlasermachining.Schuockeretal. pointoutthattheerosiontakesplaceatanearlyverticalplaneatthemomentaryend ofthecut.Thatplaneiscoveredbyathinmoltenlayer.Theremovalofmaterialfrom thatlayeriscarriedoutbyevaporationandbyejectionofmoltenmaterial[3,4]. 1.1.1.1 One-DimensionalMachining:Drilling Inpracticalapplicationsoflaserdrilling,thequalityofthedrilledholeisthecritical factor. A reactive gas jet (O ) can be used to remove material through oxidation, 2 chemicalreactions,etc.[5].Foraerosolnozzles,holeswithdiametersfrom0.15to 1 mm are required. Conventional molding techniques do not have the flexibility tochangeholesizeinprocess.Laserdrillingcombinestheflexibilityofchangeable holediameterwithhighproductionrates[6].In[7],0.125in.diameterholeswere drilled in 0.05 in. thick Kevlar/Epoxy for a 1,200 W beam using the trepanning method. Cycle time was approximately 1.5 s per hole. In percussion drilling, a pulsedbeamremovesmaterialthroughmeltingandlocalizeddetonationorexplo- sion. In this case, about 90% of the materials are removed through detonation effects [8]. For laser percussion drilling processes on metals, drilling efficiency is stronglydependentonthelaser-supporteddetonation[9].