ebook img

Admissibility Conditions for Degenerate Cyclotomic BMW Algebras PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Admissibility Conditions for Degenerate Cyclotomic BMW Algebras

ToappearinCommunicationsinAlgebra ADMISSIBILITYCONDITIONSFORDEGENERATECYCLOTOMICBMW ALGEBRAS 0 1 0 FREDERICKM.GOODMAN 2 n ABSTRACT. Westudyadmissibilityconditionsfortheparametersofdegeneratecyclo- a tomicBMWalgebras. Weshowthattheu–admissibilityconditionofAriki,Mathas J andRuiisequivalenttoasimplemoduletheoreticcondition. 2 2 ] A Q 1. INTRODUCTION . ThecyclotomicBirman–Wenzl–Murakami(BMW)algebrasareBMWanaloguesof h t cyclotomic Hecke algebras[2,1], while the degeneratecyclotomicBMWalgebrasare a m BMWanaloguesofdegeneratecyclotomicHeckealgebras[10]. ThecyclotomicBMWalgebrasweredefinedbyHäring–Oldenburgin[9]andhave [ recentlybeenstudiedbythreegroupsofmathematicians: GoodmanandHauschild– 2 Mosley[6,7,8,4],Rui,Xu,andSi[14,12],andWilcoxandYu[16,17,15,18]. v DegenerateaffineBMWalgebraswereintroducedbyNazarov[11]underthename 3 5 affine Wenzl algebras. The cyclotomic quotients of these algebras were introduced 2 by Ariki, Mathas, andRuiin [3] andstudied furtherbyRui andSi in [13], underthe 4 namecyclotomicNazarov–Wenzlalgebras. (Wepropose torefertothesealgebrasas . 5 degenerateaffine(resp. degeneratecyclotomic) BMWalgebrasinstead,tobringthe 0 terminologyinlinewiththatusedfordegenerateaffineandcyclotomic Hecke alge- 9 0 bras.) : Apeculiar feature of the cyclotomic anddegenerate cyclotomic BMW algebras is v i thatit isnecessarytoimpose “admissibility" conditions ontheparametersentering X into the definition of the algebras in order to obtain a satisfactory theory. For the r a cyclotomicBMWalgebras,twoapparentlydifferentconditionswereproposed,oneby WilcoxandYu[16]andanotherbyRuiandXu[14].Werecentlyshowed[5]thatthetwo conditionsareequivalent.Moreover,accordingto[16],admissibilityisequivalenttoa simplemoduletheoreticcondition: theleftidealW e generatedbythe“contraction" 2 e inthetwo–strandalgebraisfreeofthemaximalpossiblerank. Itisnaturaltoaskforsimilarresultsregardingtheparametersofdegeneratecyclo- tomicBMWalgebras.Ariki,MathasandRui[3]introducedanadmissibilitycondition (calledu–admissibility)forthesealgebras,basedonaheuristicinvolvingtherankof theleftidealW e inthetwo–strandalgebra,butupuntilnowithasnotbeenshown 2 that their condition is equivalent to W e being free of maximal rank. In this note, 2 2000MathematicsSubjectClassification. 20C08,16G99,81R50. 1 2 FREDERICKM.GOODMAN weintroduceananalogueforthedegeneratecyclotomicBMWalgebrasoftheadmis- sibility condition ofWilcox andYu [16],we showthatthiscondition isequivalent to u–admissibility,andthatbothconditionsareequivalenttoW e beingfreeofmaximal 2 rank. 2. DEFINITIONS Fixapositiveintegern andacommutativeringR withmultiplicativeidentity. Let Ω={ω : a ≥0}beasequenceofelementsofR. a Definition 2.1(Nazarov [11]). The degenerateaffine BMW algebraWaff = Waff(Ω) is n n theunitalassociativeR–algebrawithgenerators{s ,e ,x : 1≤i <n and1≤ j ≤n} i i j andrelations: (1) (Involutions) s2=1,for1≤i <n. i (2) (Affinebraidrelations) (a) s s =s s if|i−j|>1, i j j i (b) s s s =s s s ,for1≤i <n−1, i i+1 i i+1 i i+1 (c) s x =x s ifj 6=i,i+1. i j j i (3) (Idempotentrelations) e2=ω e , for1≤i <n. i 0 i (4) (Commutationrelations) (a) s e =e s ,if|i−j|>1, i j j i (b) e e =e e ,if|i−j|>1, i j j i (c) e x =x e ,ifj 6=i,i+1, i j j i (d) x x =x x ,for1≤i,j ≤n. i j j i (5) (Skeinrelations) s x −x s =e −1,andx s −s x =e −1,for1≤i <n. i i i+1 i i i i i i+1 i (6) (Unwrappingrelations) e xae =ω e ,fora >0. 1 1 1 a 1 (7) (Tanglerelations) (a) e s =e =s e ,for1≤i ≤n−1, i i i i i (b) s e e =s e ,ande e s =e s ,for1≤i ≤n−2, i i+1 i i+1 i i i+1 i i i+1 (c) e e s =e s ,ands e e =s e ,for1≤i ≤n−2. i+1 i i+1 i+1 i i+1 i i+1 i i+1 (8) (Untwistingrelations) e e e =e ,ande e e =e ,for1≤i ≤n−2. i+1 i i+1 i+1 i i+1 i i (9) (Anti–symmetryrelations) e (x +x )=0,and(x +x )e =0,for1≤i <n. i i i+1 i i+1 i Definition2.2(Ariki,Mathas,Rui[3]). Fixanintegerr ≥1andelementsu ,...,u in 1 r R,ThedegeneratecyclotomicBMWalgebraW =W (u ,...,u )istheR–algebra r,n r,n 1 r Waff(Ω)/〈(x −u )...(x −u )〉. n 1 1 1 r Notethat,duetothesymmetryoftherelations,WaffhasauniqueR–linearalgebra n involution∗(thatis,analgebraanti-automorphismoforder2)suchthate∗=e ,s∗= i i i s ,andx∗=x foralli.Theinvolutionpassestocyclotomicquotients. i i i aff Lemma2.3(see[3],Lemma2.3). InthedegenerateaffineBMWalgebraW ,for1≤ n i <n anda ≥1,onehas a (2.1) s xa =xa s + xb−1(e −1)xa−b. i i i+1 i i+1 i i b=1 X DEGENERATECYCLOTOMICBMWALGEBRAS 3 Takingi =1inLemma2.3,pre–andpost–multiplyingbye andsimplifyingusing 1 therelationsgives: a a (2.2) ω e =(−1)aω e + (−1)b−1ω ω e + (−1)bω e a 1 a 1 b−1 a−b 1 a−1 1 b=1 b=1 X X Fora odd,thisgives a (2.3) 2ω e = (−1)b−1ω ω e −ω e , a 1 b−1 a−b 1 a−1 1 b=1 X whichisCorollary2.4in[3].Asnotedin[3],theidentityderivedfrom(2.2)incasea is evenisatautology. ConsiderthecyclotomicalgebraW (u ,...,u ),andleta denotethesignedele- r,n 1 r j mentarysymmetricfunctioninu ,...,u ,namely,a =(−1)r−jǫ (u ,...,u ).Thus, 1 r j r−j 1 r inthecyclotomic algebra,wehavetherelation r a xj =0. Multiplyingbyxa for j=0 j 1 1 anarbitrarya ≥0andpre–andpost–multiplyingbye gives P 1 r (2.4) a ω e =0. j j+a 1 j=0 X Corollary2.4. Considerthe cyclotomicalgebraW (u ,...,u ). If e isnot a torsion r,n 1 r 1 elementoverR,thenwehave: (1) 2ω = a (−1)b−1ω ω −ω ,forallodda ≥1,and a b=1 b−1 a−b a−1 r (2) a ω =0,foralla ≥0. j=0 Pj j+a DefinitiPon2.5. Saythattheparametersω (a ≥0)andu ,...,u areweaklyadmis- a 1 r sible,orthatthe groundringR is weaklyadmissible,if the relationsof Corollary2.4 hold. Weakadmissibility isanon–trivialitycondition forthecyclotomic algebras; ifthe groundringisafield,andweakadmissibilityfails,thene =0,andthecyclotomical- 1 gebrareducestoaspecializationofthedegeneratecyclotomicHeckealgebra,see[3], pages60–61. Inthefollowing,weusethenotationδ =1ifP istrueandδ =0ifP isfalse. (P) (P) Lemma2.6. InthedegenerateaffineBMWalgebra,fora ≥1,wehave a (2.5) s xae =(−1)axae + (−1)b−1ω xb−1e −δ xa−1e . 1 1 1 1 1 a−b 1 1 (aisodd) 1 1 b=1 X Proof. Takei =1inequation(2.1). Post–multiplybye ,andsimplify,usingtherela- 1 (cid:3) tions. 3. u–ADMISSIBILITY Thedefinitionofu–admissibilityismotivatedbyTheorem3.2below,whichises- sentiallycontainedin[3],althoughnotexplicitlystatedthere. 4 FREDERICKM.GOODMAN Lemma3.1. LetR beanygroundringwithparametersω fora ≥0andu ,...,u .Let a 1 r W denotethetwostranddegeneratecyclotomicBMWalgebradefinedoverR.Then 2,R (1) TheleftidealW e equalstheR–spanof{e ,x e ,...,xr−1e }. 2,R 1 1 1 1 1 1 (2) W isspannedoverR by{xae xb, xaxbs , xaxb :0≤a,b ≤r−1} 2,R 1 1 1 1 2 1 1 2 Proof. UsingLemma2.3,andthedefiningrelationsofthealgebra,oneseesthatthe span of {e ,x e ,...,xr−1e } is invariant under left multiplication by the generators 1 1 1 1 1 x ,e ,s ,andthatx xae =−xa+1e . Thisprovespart(1). Part(2)issimilar,see[3], 1 1 1 2 1 1 1 1 (cid:3) Proposition2.15. Theorem3.2([3]). LetF beafieldofcharacteristic6=2,withparametersω fora ≥0 a andu ,...,u .Assumethattheu aredistinctandu +u 6=0foralli,j.LetW =W 1 r i i j 2,F bethedegeneratecyclotomicBMWalgebradefinedoverF withparametersω fora ≥0 a andu ,...,u .Thenthefollowingconditionsareequivalent: 1 r (1) {e ,x e ,...,xr−1e }⊆We islinearlyindependentoverF,ande We 6=0. 1 1 1 1 1 1 1 1 (2) Foralla ≥0,ω = r γ ua,where a i=1 i i P u +u (3.1) γ =(2u −(−1)r) i j, i i u −u i j j6=i Y andsomeω isnon–zero. a (3) W admitsamoduleM withbasis{v ,x v ,...,xr−1v }suchthate M =Fv . 0 1 0 1 0 1 0 Proof. Theimplication(1) =⇒ (3)isobvious. Assumecondition(3). Wehavev =e m forsomem ∈M,soe xjv =e xje m = 0 1 1 0 1 1 ω e m =ω v for1≤j ≤r −1. Moreover,someω 6=0sincee M 6=(0). Definep ∈ j 1 j 0 j 1 i x −u W byp = 1 j .Thenp2=p , p =1,andx p =u p .Definem ∈M by 1,F i u −u i i i i 1 i i i i i j j6=i m =p v .ThYenm 6=0bytheassumedPlinearindependenceof{v ,x v ,...,xr−1v }, i i 0 i 0 1 0 1 0 x m = u m , and m = ( p )v = v . It follows that {m ,...,m } is linearly 1 i i i i i i i 0 0 1 r independent, since the m areeigenvectors forx with distinct eigenvalues. Define i 1 P P κ andc inF bye m =κ v =κ m ,ands m = c m . (Itwillbeshown j i,j 1 j j 0 j i i 1 j i i,j i thatκ =γ ,whereγ isdefinedabove.) Notethate M 6=(0)impliesthatκ 6=0for j j j 1 j P P somej. TheargumentcontinuesasintheproofofTheorem3.2in[3],pp.65–67.Applythe identityx s −s x −e +1=0tom toderiveaformulaforc , 1 1 1 2 1 j i,j c =(κ −δ )/(u +u ). i,j j i,j i j Nextapplytheidentitye =s e tom toget 1 1 1 i d d κ −1 κ j k (3.2) κ m =e m =s e m =κ + m , i j 1 i 1 1 i i j 2u u +u j=1 j=1 j k6=j j k X Xn X o DEGENERATECYCLOTOMICBMWALGEBRAS 5 fori =1,...,r. Since atleastoneκ isnon–zero,matchingcoefficientsin(3.2)gives i theequations d κ 1 k (3.3) =1+ , u +u 2u j k j k=1 X forj =1,...,r. Nowitisshownin[3],page66,thattheuniquesolutiontothissystem ofequationsisκ =γ for1≤j ≤1.Finally,wehave j j j j j j (3.4) ω v =e x v =e x ( m )=e u m =( u γ )v . j 0 1 1 0 1 1 i 1 i i i i 0 i i i X X X Thisshows(3) =⇒ (2). Finally, (2) =⇒ (1) byTheoremAof [3],namelyassuming (2), W hasanR–basis thatincludes{e ,x e ,...,xr−1e },sothelattersetislinearlyindependent. (cid:3) 1 1 1 1 1 Theelementsγ appearinginTheorem3.2arerationalfunctionsinu ,...,u with j 1 r singularitiesatu =u ,butitisshownin[3]thattheelements γ ua arepolyno- i j i i i mialsinu ,...,u ,asfollows: 1 r P Let u ,...,u and t be algebraically independent indeterminants over Z. Define 1 r symmetricpolynomialsq (u)inu ,...,u by a 1 r r 1+u t i = q (u)ta. 1−u t a i=1 i a≥0 Y X Thepolynomialsq areknownasSchurq–functions.Letγ (u)bedefinedby(3.1)with a j u replacedbyu . Moreover,letη (u)= r γ (u)ua fora ≥0. Then([3],Lemma i i a i=1 j j 3.5) P 1 1 (3.5) η (u)=q (u)− (−1)rq (u)+ δ . a a+1 a a,0 2 2 Inparticulartheη arepolynomialsinu ,...,u . a 1 r Corollary3.3. LetF beafieldofcharacteristic6=2,withparametersω fora ≥0and a u ,...,u . Assume thattheu aredistinctandu +u 6=0 for all i,j. Let W = W 1 r i i j 2,F bethedegeneratecyclotomicBMWalgebradefinedoverF withparametersω fora ≥ a 0 and u ,...,u . If {e ,x e ,...,xr−1e } ⊆ We is linearly independent over F, and 1 r 1 1 1 1 1 1 e We 6=0,then 1 1 1 1 (3.6) ω =q (u ,...,u )− (−1)rq (u ,...,u )+ δ . a a+1 1 r a 1 r a,0 2 2 Thismotivatesthefollowingdefinition,whichmakessenseforarbitraryu ,...,u : 1 r Definition 3.4 ([3]). Let R be a commutative ring with parameters ω (a ≥ 0) and a u ,...,u .Supposethat2isinvertibleinR.Saythattheparametersareu–admissible 1 r if 1 1 (3.7) ω =q (u ,...,u )+ (−1)r−1q (u ,...,u )+ δ a a+1 1 r a 1 r a,0 2 2 foralla ≥0. 6 FREDERICKM.GOODMAN 4. ADMISSIBILITY WefixagroundringR withparametersω (a ≥0)andu ,...,u . Weconsiderthe a 1 r twostranddegeneratecyclotomic BMWalgebraoverR,W =W (u ,...,u )andwe 2,r 1 r writee =e ,s =s ,andx =x . 1 1 1 Lemma4.1. Supposethat{e,xe,...,xr−1e}islinearlyindependentover R. Thenthe parametersω (a ≥0)andu ,...,u areweaklyadmissibleandsatisfythefollowing a 1 r relations: r−j−1 (4.1) ω a =−2δ a +δ a , µ µ+j+1 (r−jisodd) j (jiseven) j+1 µ=0 X for0≤j ≤r−1. Proof. Since{e,xe,...,xr−1e}isassumedlinearlyindependentoverR,inparticulare isnotatorsionelementoverR,andhenceR isweaklyadmissiblebyCorollary2.4. Ifr =1,(4.1)reducestothesingle equationω +2a −1=0,whichfollows from 0 0 (sx+xs+1−e)e =0,togetherwithx =u =−a andse =e.Assumer ≥2.Wehave 1 0 0=(sx−x s+1−e)xr−1e =(sx+xs+1−e)xr−1e. 2 Applytheidentityx(xr−1e)=− r−1a xje aswellastheidentity(2.5)andsimplify. j=0 j Thisgives: P r−1 r−2 r−j−2 0=−a e− (−1)ja xje + a xje+ (−1)j ω a xje 0 j j+1 µ µ+j+1   j=1 0≤j≤r−2 j=0 µ=0 X X X X jeven     r−1 r−1 +(−1)r a xje−δ xr−1e+ ω xje j (riseven) r−1−j j=0 j=1 X X +xr−1e−ω e, r−1 where the three lines of the display correspond to evaluation of sxxr−1e, xsxr−1e, and (1−e)xr−1e. Because {e,xe,...,xr−1e} is assumed to be linearly independent, thecoefficientofxje iszeroforeachj,0≤j ≤r−1.Extractingthecoefficientsyields (4.1).Hereonehastotreatthethreecasesj =0, 1≤j ≤r−2,andj =r−1separately, (cid:3) buttheresultinallthreecasesisthesame. Definition4.2. Saythattheparametersω (a ≥0)andu ,...,u areadmissible(or a 1 r thatthegroundringR isadmissible) ifthe relations(4.1)holdfor0≤ j ≤r −1and r a ω =0holdsforalla ≥0. µ=0 µ µ+a RPemark4.3. Admissibility isanalogoustotheadmissibility conditionofWilcoxand Yu for the cyclotomic BMW algebras [16]. Our terminology differs from that in [3], whereadmissibilitymeansessentiallywhatwehavecalledweakadmissibility. DEGENERATECYCLOTOMICBMWALGEBRAS 7 Lemma 4.4. There exist universal polynomials H (u ,...,u ) (a ≥ 0), symmetric in a 1 r u ,...u ,suchthatwheneverR isanadmissiblering,onehas 1 r (4.2) ω =H (u ,...,u ) a a 1 r fora ≥0. Proof. Thesystemofrelations(4.1)isaunitriangularlinearsystemofequationforthe variablesω ,...,ω .Infact,ifwelisttheequationsinreverseorderthenthematrix 0 r−1 ofcoefficientsis 1 a 1 r−1   a a 1 r−2 r−1 .  ... ... ...     a a ... a 1  1 2 r−1    Solvingthesystemforω0,...,ωr−1 givesthesequantitiesaspolynomialfunctionsof r a ,...,a ,thussymmetricpolynomialsinu ,...,u . Therelations a ω = 0 r−1 1 r j=0 j j+m 0,forallm ≥0yield(4.2)fora ≥r. (cid:3) P 5. EQUIVALENCE OFADMISSIBILITY CONDITIONS In thissection we will show thatadmissibility andu–admissibility areequivalent (assumingthat2isinvertibleinthegroundring,sothatu–admissibilitymakessense.) First, we will obtain the polynomials H of Lemma 4.4 explicitly in terms of the a Schurq–functions.ConsideringthegeneratingfunctionfortheSchurq–functions, r 1+u t (5.1) i = q (u)ta, 1−u t a i=1 i a≥0 Y X wehave r r (5.2) (1−u t) q (u)ta = (1+u t). i a i ! ! i=1 a≥0 i=1 Y X Y Takingintoaccountthatq (u)=1,wealsohave 0 r r r (5.3) (1−u t) q (u)ta = (1+u t)− (1−u t). i a i i ! ! i=1 a≥1 i=1 i=1 Y X Y Y Matchingcoefficientsin(5.2)andwritingintermsofthesignedelementarysymmet- ricfunctionsa (u)gives i r−j−1 (5.4) q (u)a (u)=(−1)r−j−1a (u), for0≤j ≤r−1, µ µ+j+1 j+1 µ=0 X and,moreover, r (−1)ra (u) ifa =0, (5.5) a (u)q (u)= 0 µ µ+a µ=0 (0 ifa ≥1. X 8 FREDERICKM.GOODMAN Doingthesamewith(5.3)yields r−j−1 (5.6) q (u)a (u)=−2δ a (u), for0≤j ≤r −1. µ+1 µ+j+1 (r−j isodd) j µ=0 X Ifweset 1 1 η (u)=q (u)+ (−1)r−1q (u)+ δ , a a+1 a a,0 2 2 then,using(5.4)and(5.6),weget r−j−1 (5.7) η (u)a (u)=−2δ a (u)+δ a (u), µ µ+j+1 (r−jisodd) j (jiseven) j+1 µ=0 X for0≤j ≤r−1.From(5.5),weobtain r (5.8) a (u)η (u)=0, foralla ≥0. µ µ+a µ=0 X Lemma5.1. Let R be commutativeringinwhich2isinvertible. Letω (a ≥0)and a u ,...,u beparametersinR. Thentheparametersareadmissible,if,andonlyif,they 1 r areu–admissible. Proof. By definition, the parameters are u–admissible if ω = η (u ,...,u ) for all a a 1 r a ≥0.Itfollowsfrom(5.7)and(5.8)thatu–admissibleparametersareadmissible. On the other hand, if the parameters are admissible, then the relations (4.1) for r 0≤j ≤r −1and a ω =0fora ≥0uniquelydeterminetheω foralla ≥0 µ=0 µ µ+a a assymmetricpolynomialfunctionsofu ,...,u . Butaccordingto(5.7)and(5.8),the 1 r P elementsη (u ,...,u )satisfythesamerelations.Henceω =η (u ,...,u )fora ≥0, a 1 r a a 1 r (cid:3) sotheparametersareu–admissible. Theorem5.2. LetR beacommutativeringwithparametersω (a ≥0)andu ,...,u . a 1 r Supposethat 2isinvertibleinR.ConsiderthetwostranddegeneratecyclotomicBMW algebraoverR,W =W (u ,...,u ).Thefollowingareequivalent: 2,r 1 r (1) {e ,x e ,...,xr−1e }islinearlyindependentoverR. 1 1 1 1 1 (2) {xae xb,xaxbs ,xaxb :0≤a,b ≤r−1}islinearlyindependentoverR. 1 1 1 1 2 1 1 2 (3) Theparametersareadmissible. (4) Theparametersareu–admissible. Proof. Lemma4.1gives(1) =⇒ (3). Lemma5.1gives(3)⇐⇒(4). Theimplication(4) =⇒ (2)ispartofthemainresult(TheoremA)of[3].Finally(2) =⇒ (1)istrivial. (cid:3) Iftheequivalentconditionsofthetheoremhold,thenthesetsin(1)and(2)areR– basesofW e ,respectivelyofW ,sincetheyarespanningbyLemma3.1.IfR isan 2,R 1 2,R integraldomaintheconditionsareequivalentto: (1′)W e isfreeoverR ofrankr, 2,R 1 respectively(2′)W isfreeoverR ofrank3r2. 2,R DEGENERATECYCLOTOMICBMWALGEBRAS 9 REFERENCES 1. SusumuAriki,RepresentationsofquantumalgebrasandcombinatoricsofYoungtableaux,University LectureSeries,vol.26,AmericanMathematicalSociety,Providence,RI,2002, Translatedfromthe 2000Japaneseeditionandrevisedbytheauthor.MRMR1911030(2004b:17022) 2. SusumuArikiandKazuhikoKoike,AHeckealgebraof(Z/rZ)≀S andconstructionofitsirreducible n representations,Adv.Math.106(1994),no.2,216–243.MRMR1279219(95h:20006) 3. SusumuAriki,AndrewMathas,andHebingRui,CyclotomicNazarov-Wenzlalgebras,NagoyaMath. J.182(2006),47–134.MRMR2235339 4. FrederickM.Goodman,Cellularityofcyclotomicbirman-wenzl-murakamialgebras,JournalofAl- gebra321(2009),no.11,3299–3320,SpecialIssueinHonorofGusLehrer. 5. ,ComparisonofadmissibilityconditionsforcyclotomicBirman–Wenzl–Murakamialgebras, preprint(2009). 6. FrederickM.GoodmanandHollyHauschild,AffineBirman-Wenzl-Murakamialgebrasandtangles inthesolidtorus,Fund.Math.190(2006),77–137.MRMR2232856 7. FrederickM.GoodmanandHollyHauschildMosley,CyclotomicBirman-Wenzl-Murakamialgebras I:Freenessandrealizationastanglealgebras,J.KnotTheoryRamif.18(2009),1089–1127. 8. ,CyclotomicBirman-Wenzl-MurakamialgebrasII:Admissibilityrelationsandfreeness,Alge- brasandRepresentationTheory(toappear),arXiv:math/0612065. 9. ReinhardHäring-Oldenburg,CyclotomicBirman-Murakami-Wenzlalgebras,J.PureAppl.Algebra 161(2001),no.1-2,113–144.MRMR1834081(2002c:20055) 10. AlexanderKleshchev,Linearandprojectiverepresentationsofsymmetricgroups,CambridgeTractsin Mathematics,vol.163,CambridgeUniversityPress,Cambridge,2005.MRMR2165457(2007b:20022) 11. MaximNazarov,Young’sorthogonalformforBrauer’scentralizeralgebra,J.Algebra182(1996),no.3, 664–693.MRMR1398116(97m:20057) 12. H. Rui and M. Si, The representation theory of cyclotomic BMW algebras II, preprint (2008), arXiv:0807.4149. 13. HebingRuiandMeiSi,OnthestructureofcyclotomicNazarov-Wenzlalgebras,J.PureAppl.Algebra 212(2008),no.10,2209–2235.MRMR2418167 14. HebingRuiandJieXu,Therepresentationsofcyclotomicbmwalgebras,JournalofPureandApplied Algebra213(2009),no.12,2262–2288. 15. StewartWilcoxandShonaYu,OnthefreenessofthecyclotomicBMWalgebras:admissibilityandan isomorphismwiththecyclotomicKauffmantanglealgebras,preprint(2009),arXiv:0911.5284. 16. ,ThecyclotomicBMWalgebraassociatedwiththetwostringtypeBbraidgroup,Comm.Alge- bra(toappear). 17. ,OnthecellularityofthecyclotomicBirman-Murakami-Wenzlalgebras,J.Lond.Math.Soc. (toappear). 18. ShonaYu, ThecyclotomicBirman–Murakami–Wenzlalgebras,Ph.D.Thesis, UniversityofSydney (2007),arXiv:0810.0069. DEPARTMENTOFMATHEMATICS,UNIVERSITYOFIOWA,IOWACITY,IOWA E-mailaddress: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.