Adiabatic Processes for Charged AdS Black Hole in the Extended Phase Space ShanquanLana,WenbiaoLiua,∗ aDepartmentofPhysics,InstituteofTheoreticalPhysics,BeijingNormalUniversity,Beijing,100875,China Abstract In the extended phase space, a general method is used to derive all the possible adiabatic processes for charged AdS black hole. Twokindsarefound,oneiszerotemperatureadiabaticprocesswhichisirreversible,theotherisisochoreadiabaticprocesswhich isreversible. Forthezerotemperatureadiabaticexpansionprocess,entropyisincreasing;pressure,enthalpy,Gibbsfreeenergyand internalenergyaredecreasing;system’spotentialenergyistransformedtotheworkdonebythesystemtotheoutersystem. Forthe 7isochoreadiabaticprocess,entropyandinternalenergyarefixed;temperature,enthalpyandGibbsfreeenergyareproportionalto 1pressure;duringthepressureincreasingprocess,temperatureisincreasingandsystem’spotentialenergyistransformedtoitskinetic 0energy. Comparingthesetwoadiabaticprocesseswiththoseinnormalthermodynamicsystem,wefindthatthezerotemperature 2adiabatic process is much like the adiabatic throttling process(both are irreversible and with work done), the isochore adiabatic nprocessismuchlikeacombinationofthereversibleadiabaticprocess(bothwithfixedentropy)andtheadiabaticfreeexpansion aprocess(bothwithfixedinternalenergy). J 7 1 1. Introduction (2) there is a swallow tail feature onG−T graph (G is Gibbs freeenergy)forcertainfixedPandthecrosspointisidentified ] h Predicted by general relativity, black hole is a “simple” ob- asthephasetransitionpoint. Inanalogywithnormalfluidther- tject and it is an interdisciplinary research field of general rel- - modynamic system, we have gained a much better understand pativity, quantum mechanics and thermodynamics. For these of the charged AdS black hole’s properties. In Ref.[18], the ereasons, black hole has always been an interesting topic. At blackholemoleculesareidentifiedandareusedtomeasurethe h early times, black hole is thought to be a dead star which ab- [ microscopicdegreesoffreedom. InRef.[19],thechargedAdS sorbseverything,andnothingcanescapefromit. While,inthe blackholefluidisusedtodesignheatengines. InRef.[20],the 170s, Bekenstein found that a black hole possess temperature Joule-Thomson expansion of charged AdS black hole fluid is v and entropy[1, 2]. Bardeen, Carter and Hawking established 2 studied,processofwhichcanbeusedonrefrigeration. thefourlawsofblackholedynamics[3]. ThenHawkingfound 6 6thatblackholeradiateandreassuredtheconceptofblackhole 4temperature[4]. Thus the four dynamic laws become the four 0thermodynamic laws and black hole is believed to be a ther- Innormalthermodynamicphysics,weareveryinterestedin . thefluids’adiabaticprocesses,astheyareoftenusedonrefrig- 1modynamic system. As time passes, new interesting discov- 0eries are found, such as the Hawking-Page phase transition in eration in our daily life. Such as the adiabatic throttling pro- 7 cess,thereversibleadiabaticprocess(duringwhichtheentropy theSchwarzschild-AdSblackhole[5]andthefirstorderphase 1 S isconstant)andtheadiabaticfreeexpansionprocess(during transitioninthechargedAdSblackhole[6,7]. Blackholeasa : vthermodynamicsystemisfurtherunderstood. whichtheinternalenergyU isconstant). Inthispaper,wewill i investigate all the possible adiabatic processes for the charged X Inrecentyears,treatingthecosmologicalconstantasather- modynamical variable related to the dynamic pressure P (P = AdS black hole and compare them with those in normal ther- r a−Λ/(8π))[8], the thermodynamic properties of various AdS modynamic systems, hope to gain a better understand of the chargedAdSblackhole’sproperties. blackholes[9,10,11,12,13,14,15,16]inthisextendedphase space have beenextensively studied. Focusingon the charged AdSblackhole[8,17],itsthermodynamicsarefoundtosharea lotsimilaritieswiththatofVanderWaalsgases. Forexample, The rest of our paper is organized as follows. In section 2, forboththethermodynamicsystems,(1)thereisanoscillating webrieflyintroducethefirstthermodynamiclawandthermody- behavioronP−Vgraph(Visvolume)forcertainfixedT which namicfunctionsofchargedAdSblackholewhichisestablished signalsaphasetransitionphenomenonandthephasetransition in Ref.[8]. In section 3, we use a general method to find all pointcanalsobedeterminedbytheMaxwell’sequalarealaw; the possible adiabatic processes for a AdS black hole thermo- dynamic system in canonical ensemble. For the charged AdS blackhole,wefindtwokindsofadiabaticprocesses.Thentheir ∗Correspondingauthorat: DepartmentofPhysics,InstituteofTheoretical thermodynamics are studied. In the last section 4, we make a Physics,BeijingNormalUniversity,Beijing,100875,China Emailaddress:[email protected](WenbiaoLiu) conclusionanddiscussion. PreprintsubmittedtoElsevier January18,2017 2. ThermodynamicsofChargedAdSBlackHolesintheEx- ThecorrespondingSmarrrelationis tendedPhaseSpace M =2(TS −VP)+ΦQ, (11) In this section, we will give a brief review of the ther- modynamics of charged AdS black holes in the extended whichcanbederivedbyadimensionalscalingargument[29]. phase space mainly based on Refs.[8]. For a detail and ex- ThefreeenergyofthechargedAdSblackholesystemisthe tended knowledge of this subject, one can consult the related totalaction, Refs.[17, 21, 19, 20, 22, 23, 24, 18, 25, 26, 27, 28] and refer- I = IEM+Is+Ic. (12) encestherein. I istheabovebulkaction,I isasurfaceterm[8] EM s TheEinstein-Maxwellbulkactionreads (cid:90) 1 (cid:90) √ IEM =−161π d4x√−g(R−2Λ−F2), (1) Is = −8π ∂Md3x hK 1 (cid:90) √ where Λ = −3/l2, the cosmological constant. A spherical −4π d3x hnaFabAb, (13) ∂M chargedAdSblackholeisthisaction’ssolution.Themetricand theU(1)fieldarewritteninSchwarzschild-likecoordinatesas and Ic is a counter term induced to cure the infrared divergences[30, 31]. The total action is first calculated in ds2 =−f(r)dt2+ dr2 +r2dΩ2, (2) Refs.[32,33]andreads f(r) 2 β 3l2Q2 I = (l2r+−r+3 + ). (14) Q 4l2 r+ F =(dA) , A =− (dt) . (3) ab ab a r a Associating it with the Gibbs free energy (G) and identifying Here,dΩ2 istheelementontwodimensionalsphereandfunc- Mastheenthalpy(H),onefinds 2 tion f(r)isgivenby 1 1 3Q2 f(r)=1− 2M + Q2 + r2, (4) G = 4(r+− l2r+3 + r+ ) r r2 l2 = TS −2VP+ΦQ= M−TS = H−TS. (15) withMtheADMmassoftheblackhole,Qthetotalchargeand These two thermodynamic functions are self-consistent. Then ltheAdScurvatureradius. the differential formula of Gibbs free energy is easily derived Thepositionoftheblackholeeventhorizonisdeterminedas fromEq.(10) thelargerrootof f(r+)=0whichleadsto dG =−SdT +VdP+ΦdQ. (16) 1 Q2 r3 M = (r++ + +). (5) 2 r+ l2 3. TwoKindsofAdiabaticProcesses Theblackholetemperatureis In the above section, enthalpy and Gibbs free energy have T = f(r+)(cid:48) = 1 (M + r+ − Q2) beenidentified.Fromthem,theotherthermodynamicfunctions 4π 2π r+2 l2 r+3 can be easily derived. In this paper, we are interested in the 1 3r2 Q2 internalenergy = (1+ + − ). (6) 4πr+ l2 r+2 U = M−PV =2TS −3VP+ΦQ Theentropyis = r+ + Q2, (17) A 2 2r+ S = , A=4πr2, (7) + 4 anditsdifferentialformula andtheelectricpotentialΦ,measuredatinfinitywithrespectto dU =TdS −PdV+ΦdQ. (18) thehorizon,is Q Φ= . (8) Fromalltheabovethermodynamicfunctions,weareconvinced r+ that a system with fixed Q corresponds to canonical ensemble Identifying the thermodynamic volume and the correspond- and a system with variable Q corresponds to grand canonical ingpressureas ensemble. Since the adiabatic system is canonical ensemble, 4 3 wewillonlyconsiderthefixedQcasesfromnowon, V = πr3, P= , (9) + 3 8πl2 dU =TdS −PdV. (19) the solution obeys the first law of black hole thermodynamics Asweknow,thechangeofasystem’sinternalenergy(∆U) insuchanextended(includingPandVvariables)phasespace has two sources, one is the heat absorbed by the system from dM =TdS +ΦdQ+VdP. (10) theoutersystem(∆Q ),theotheristheworkdonebytheouter h 2 system(ortheminusworkdonebythesystem−∆W). Thuswe 25 have P ∆U =∆Q −∆W. (20) 20 h Q=1 ComparingwithEq.(19),wecanidentify 15 dQ =TdS, dW = PdV. (21) 10 h Duringtheadiabaticprocesses,wehave 5 dQh =TdS =0, (22) 0 r+ 0.4 0.6 0.8 1.0 orequivalently 3.0 S dU =−dW =−PdV. (23) Q=1 2.5 From TdS = 0, it is easy to find that there are two kinds 2.0 ofadiabaticprocesses, oneisT = 0process, theotherisr+ = constprocess. 1.5 FromdU =−PdV,recallingtheformulaofUinEq.(17),we 1.0 have 0.5 d(r2+ + 2Qr2+)=−4πPr+2dr+ 0.0 0.4 0.6 0.8 r+1.0 3.5 1 Q2 M ⇐⇒ (2 − 2r2)dr+ =−4πPr+2dr+. (24) 3.0 + Q=1 Onecanalsofindthattherearetwocases,oneisP= 1 (Q2 − 2.5 1), the other is r+ = const. For the first case, plug it8πirn+2tor+2the 2.0 temperatureformulaEq.(6),onegetT =0. Sothesetwomethodstoderiveallthepossibleadiabaticpro- 1.5 cessesareequivalent. Inthefollowingsection,wewillanalyse r+ 1.0 thederivedtwoadiabaticprocessesrespectively. 0.4 0.6 0.8 1.0 3.5 3.1. Zerotemperatureadiabaticprocess G 3.0 Inthiscase,wehavealreadyfoundthat Q=1 1 Q2 2.5 T =0, P= ( −1). (25) 8πr2 r2 + + 2.0 r2 ≤ Q2 is required to make sure that the pressure is positive. + 1.5 The three thermodynamic functions (enthalpy M, Gibbs free r+ energyGandinternalenergyU)aredeterminedas 1.0 0.4 0.6 0.8 1.0 M = r+(1+ 2Q2), 2.5 U 3 r2 + G = r+(1+ 2Q2), Q=1 3 r2 2.0 + U = r+(1+ Q2). (26) 2 r2 1.5 + M and G are found to be equal to each other. It is easy to r+ checkthatduringtheadiabaticexpansionprocess0<r+2 ≤ Q2, 1.0 0.4 0.6 0.8 1.0 volume V and entropy S are increasing functions; pressure P, enthalpy M, Gibbs free energy G and internal energy U are decreasing functions. We plot the pressure, entropy, enthalpy, Figure1: Thepressure P, entropyS, enthalpy M, GibbsfreeenergyG and Gibbs free energy and internal energy functions for Q = 1 in internalenergyUvarywithrespecttoblackholeradiusr+forQ=1. Foran Fig.1. adiabaticexpansionprocess,wefindthattheentropywillincreasedenotingits anirreversibleprocess;thepressure,enthalpy,Gibbsfreeenergyandinternal For the adiabatic expansion process, the increasing of en- energywilldecrease. tropy denotes that it is an irreversible process; the decreasing 3 ofinternalenergyforfixedtemperatureT = 0denotesthatthe 1.5 T system’s potential energy is transformed to the work W done Q=1, r+=0.5 bythesystemtotheoutersystemanditisdecreasing. Forthe extremalstateT = P=0,wefindthatM =G =U = Q. 1.0 Comparing with the three famous adiabatic processes (the adiabatic throttling process, the reversible adiabatic process withfixedentropyandtheadiabaticfreeexpansionprocesswith 0.5 fixedinternalenergy)innormalthermodynamicsystemmen- P tioned in the introduction, the adiabatic expansion process in 0.0 chargedblackholesystemismuchliketheadiabaticthrottling 0.5 1.0 1.5 2.0 process,asbothprocessesareirreversibleandtheworkisdone 1.5 S bythesystemtotheoutersystemduringwhichnoneofentropy Q=1, r+=0.5 or internal energy are fixed. But as the temperature is already zero, this“adiabaticthrottlingprocess”forchargedblackhole 1.0 cannotbeusedonrefrigeration. 3.2. Isochoreadiabaticprocess 0.5 Inthiscase,r+ =const,thequantitiesasfunctionsofvariable P Parerewrittenas 0.0 0.5 1.0 1.5 2.0 1 Q2 T =2Pr++ (1− ), 2.4 M 4πr+ r+2 2.2 Q=1, r+=0.5 S =πr2, + 2.0 M = r+(1+ Q2 + 8πPr2), 1.8 + 2 r2 3 + 1.6 G = r+(1+ 3Q2 − 8πPr+2), 1.4 4 r2 3 + 1.2 U = r+(1+ Q2). (27) 1.0 P 2 r2 0.0 0.5 1.0 1.5 2.0 + 1.6 From the temperature formula, the positivity of T and P re- G quiresthatr2 ≤ Q2andP≥ 1 (Q2 −1). 1.5 Q=1, r+=0.5 + 8πr+2 r+2 Duringtheisochoreadiabaticprocess,theentropyandinter- 1.4 nalenergyarefixed; thetemperature, enthalpyandGibbsfree 1.3 energy are all proportional to pressure. We plot the tempera- ture, entropy, enthalpy, Gibbs free energy and internal energy 1.2 functions for Q = 1,r+ = 0.5 which denotes P ≥ 0.477 in Fig.2. 1.1 P Fixed entropy and internal energy denotes it is a reversible 1.0 process. Whenthepressureisincreasing,thetemperaturewill 0.0 0.5 1.0 1.5 2.0 increase which denotes the system’s kinetic energy is increas- 2.5 U ing and as the internal energy is fixed, the potential energy is Q=1, r+=0.5 2.0 decreasing. For this process, the system’s potential energy is transformedtoitskineticenergy.Whenthepressureisdecreas- 1.5 ing, the process is reversal to the pressure increasing case and the system’s kinetic energy is transformed to its potential en- 1.0 ergy. 0.5 Also comparing with the three adiabatic processes (the adi- P abatic throttling process, the reversible adiabatic process with 0.0 fixed entropy and the adiabatic free expansion process with 0.5 1.0 1.5 2.0 fixedinternalenergy)innormalthermodynamicsystemmen- tioned in the introduction, the isochore adiabatic process in Figure2: Thetemperature,entropy,enthalpy,Gibbsfreeenergyandinternal charged black hole system is much like a combination of the energyvarywithrespecttoblackholepressurePforQ = 1,r+ = 0.5where reversible adiabatic process and the adiabatic free expansion minimumPmin ≈ 0.477. Foranisochoreadiabaticprocess, theentropyand internalenergyarefixedwhichdenotesitisareversibleprocess;thetempera- process,astheentropyandinternalenergyarefixedduringthe tureisincreasingastheincreaseofpressurewhichdenotesthesystem’skinetic process. One can also say that the corresponding “reversible energyisincreasingandastheinternalenergyisfixed,thepotentialenergyis decreasing. 4 adiabatic process” and “adiabatic free expansion process” in Acknowledgments chargedblackholesystemareidenticaltoeachotherwhichbe- comes the isochore adiabatic process. As during the isochore ThisworkissupportedbyNSFCwithGrantNos. 11235003, adiabaticprocess,whenthepressureisdecreasing,thetemper- 11175019and11178007. aturewilldecrease,soitcanalwaysbeusedonrefrigeration. References 4. ConclusionandDiscussion [1] J.D.Bekenstein, Black holes and the second law, Lett.Nuovo Cimento 4(737). ChargedAdSblackholeisathermodynamicsystem. Treat- [2] J.D.Bekenstein,Blackholesandentropy,Phys.Rev.D7(8)(1973)2333. ing its pressure as P = −Λ/(8π), we reviewed how the first [3] J.M.Bardeen, B.Carter, S.W.Hawking, Thefourlawsofblackhole mechanics,Commun.Math.Phys.31(161). thermodynamic law and the thermodynamic functions in this [4] S.W.Hawking,Particlecreationbyblackholes,Commun.Math.Phys.43 extendedphasespaceweredeterminedinsection2. Insection (1975)199. 3,forthecanonicalensemble,focusingontheinternalenergy, [5] S.W.Hawking,D.N.Page,ThermodynamicsofBlackHolesinanti-De SitterSpace,Commun.Math.Phys.87,577(1983). weintroducedageneralmethodtofindallthepossibleadiabatic [6] A.Chamblin, R.Emparan, C.Johnson, R.Myers, ChargedAdSblack processes. Thereareonlytwokindsofadiabaticprocessesfor holesandcatastrophicholography,Phys.Rev.D.60(6)064018. the charged AdS black hole, one is the zero temperature adia- [7] A.Chamblin,R.Emparan,C.Johnson,R.Myers,Holography,thermo- dynamics, andfluctuationsofchargedAdSblackholes, Phys.Rev.D. baticprocess,theotheristheisochoreadiabaticprocess. 60(10)(1999)104026. Thezerotemperatureadiabaticprocessisirreversible. There [8] D.Kubiznˇa´k,R.B.Mann,P-VcriticalityofchargedAdSblackholes, are contraction and expansion processes which are reversal to JHEP7(2012)(????)33. eachother. Soweonlyinvestigatetheexpansionprocess. Dur- [9] R.-G.Cai,L.-M.Cao,L.Li,R.-Q.Yang,P-Vcriticalityintheextended phasespaceofGauss-BonnetblackholesinAdSspace,JHEP9(2013) ingthisprocess, thereisworkdonebythesystemtotheouter (????)005. system. So the system’s internal energy is decreasing. As the [10] J.-X.Mo,W.-B.Liu,EhrenfestschemeforP-Vcriticalityofhigherdi- temperature is fixed which means the system’s kinetic energy mensionalchargedblackholes, rotatingblackholesandGauss-Bonnet is fixed, so the system’s potential energy is decreasing which AdSblackholes,Phys.Rev.D89(8)(2014)084057. [11] S.-W.Wei,Y.-X.Liu,Triplepointsandphasediagramsintheextended is transformed to the work. This adiabatic process is found to phasespaceofchargedGauss-BonnetblackholesinAdSspace, Phys. muchliketheadiabaticthrottlingprocessinnormalthermody- Rev.D90(4)(2014)044057. namicsystem,exceptthatitcannotbeusedonrefrigeration. [12] J.Suresh,R.Tharanath,V.C.Kuriakose,Aunifiedthermodynamicpic- ture of Ho?ava-Lifshitz black hole in arbitrary space time, JHEP 01 Theisochoreadiabaticprocessisreversible. Therearepres- (2015)019. sure increase and decrease processes. During the process, the [13] A.M.Frassino,D.Kubiznak,R.B.Mann,F.Simovic,MultipleReentrant system’s entropy and internal energy are fixed. Increasing the PhaseTransitionsandTriplePointsinLovelockThermodynamics,JHEP pressure,thetemperaturewillincrease,sodoesthesystem’ski- 09(2014)080. [14] E.Caceres,P.H.Nguyen,J.F.Pedraza,Holographicentanglementen- neticenergy. Asaresult,system’spotentialenergyisdecreas- tropy and the extended phase structure of STU black holes, JHEP 09 ing which is transformed to system’s kinetic energy. Decreas- (2015)184. ingthepressure,theprocessisreversaltothatofincreasingthe [15] J.Xu,L.-M.Cao,Y.-P.Hu,P-Vcriticalityintheextendedphasespaceof blackholesinmassivegravity,Phys.Rev.D91(12)(2015)124033. pressure. This adiabatic process is found to much like a com- [16] X.-X.Zeng,X.-M.Liu,L.-F.Li,PhasestructureoftheBorn-Infeld-anti- binationofthereversibleadiabaticprocess(withfixedentropy) de Sitter black holes probed by non-local observables, Eur. Phys. J. C and the adiabatic free expansion process (with fixed internal 76(11)(2016)616. energy) in normal thermodynamic system, as the entropy and [17] E.Spallucci,A.Smailagic,Maxwell’sequalarealawforchargedAnti-de Sitterblackholes,Phys.Lett.B723(2013)436–441. internalenergyarefixedduringtheprocess. Theisochoreadia- [18] S.-W.Wei,Y.-X.Liu,InsightintotheMicroscopicStructureofanAdS baticprocesscanalwaysbeusedonrefrigeration,anditisused BlackHolefromaThermodynamicalPhaseTransition,Phys.Rev.Lett. todesignheatengineinRef.[19]. 115(11)(2015)111302. Intheend,wewillliketoemphasizeonthemethodusedto [19] C.V.Johnson,Holographicheatengines,Class.Quant.Grav.31(20). [20] d.O¨kcu¨,E.Aydiner,Joule-ThomsonExpansionofChargedAdSBlack findalltheadiabaticprocesses. Thechangeofacanonicalen- Holes,arXiv:1611.06327. semblesystem’sinternalenergycomposesonlytwoparts,one [21] E.Spallucci,A.Smailagic,Maxwell’sequalarealawandtheHawking- is the heat absorbed by the system from the outer system, the Pagephasetransition,JournalofGravity2013(????)525696. [22] S.-W.Wei,Y.-X.Liu,Clapeyronequationsandfittingformulaoftheco- other is the work done by the outer system. So there are two existencecurveintheextendedphasespaceofthechargedAdSblack waystofindalltheadiabaticprocesses,onewayistoconsider holes,Phys.Rev.D91(2015)044018. theheatdifferentialtermsintheinternalenergydifferentialfor- [23] H.-H. Zhao, L.-C. Zhang, M.-S. Ma, R. Zhao, Phase transition and mula which should be zero, the other way is to calculate the ClapeyronequationofblackholesinhigherdimensionalAdSspacetime, Class.Quant.Grav.32(14)(2015)145007. minus work done by the system which should be equal to the [24] J.-L.Zhang,R.-G.Cai,H.Yu,Phasetransitionandthermodynamicalge- change of system’s internal energy. This method can be used ometryofReissner-Nordstr?m-AdSblackholesinextendedphasespace, onotherkindsofAdSblackholesystems. Forthemorecom- Phys.Rev.D91(4)(2015)044028. plicatedAdSblackholesystemswithmoreparameters,theadi- [25] P.H.Nguyen,Anequalarealawforholographicentanglemententropyof theAdS-RNblackhole,JHEP12(2015)139. abaticprocessesshouldbemoreabundantthanjusttwokinds. [26] S.-Q.Lan,J.-X.Mo,W.-B.Liu,AnoteonMaxwell’sequalarealawfor blackholephasetransition,Eur.Phys.J.C75(9)(2015)419. 5 [27] J. Sadeghi, B. Pourhassan, M. Rostami, P-V criticality of logarithm- correcteddyonicchargedAdSblackholes,Phys.Rev.D94(6)(2016) 064006. [28] A.Mandal,S.Samanta,B.R.Majhi,Phasetransitionandcriticalphe- nomenaofblackholes: Ageneralapproach,Phys.Rev.D94(6)(2016) 064069. [29] D.Kastor,S.Ray,J.Traschen,EnthalpyandtheMechanicsofAdSBlack Holes,Class.Quant.Grav.26(195011). [30] R.Emparan,C.V.Johnson,R.C.Myers,Surfacetermsascounterterms intheAdS-CFTcorrespondence,Phys.Rev.D60(104001). [31] R.B.Mann,Misnerstringentropy,Phys.Rev.D60(104047). [32] A.Chamblin,R.Emparan,C.V.Johnson,R.C.Myers,Holography,ther- modynamics,andfluctuationsofchargedAdSblackholes,Phys.Rev.D 60(1040026). [33] M. M. Caldarelli, G. Cognola, D. Klemm, Thermodynamics of Kerr- Newman-AdS black holes and conformal field theories, Class. Quant. Grav.17(2). 6