ebook img

Adiabatic Processes for Charged AdS Black Hole in the Extended Phase Space PDF

0.28 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Adiabatic Processes for Charged AdS Black Hole in the Extended Phase Space

Adiabatic Processes for Charged AdS Black Hole in the Extended Phase Space ShanquanLana,WenbiaoLiua,∗ aDepartmentofPhysics,InstituteofTheoreticalPhysics,BeijingNormalUniversity,Beijing,100875,China Abstract In the extended phase space, a general method is used to derive all the possible adiabatic processes for charged AdS black hole. Twokindsarefound,oneiszerotemperatureadiabaticprocesswhichisirreversible,theotherisisochoreadiabaticprocesswhich isreversible. Forthezerotemperatureadiabaticexpansionprocess,entropyisincreasing;pressure,enthalpy,Gibbsfreeenergyand internalenergyaredecreasing;system’spotentialenergyistransformedtotheworkdonebythesystemtotheoutersystem. Forthe 7isochoreadiabaticprocess,entropyandinternalenergyarefixed;temperature,enthalpyandGibbsfreeenergyareproportionalto 1pressure;duringthepressureincreasingprocess,temperatureisincreasingandsystem’spotentialenergyistransformedtoitskinetic 0energy. Comparingthesetwoadiabaticprocesseswiththoseinnormalthermodynamicsystem,wefindthatthezerotemperature 2adiabatic process is much like the adiabatic throttling process(both are irreversible and with work done), the isochore adiabatic nprocessismuchlikeacombinationofthereversibleadiabaticprocess(bothwithfixedentropy)andtheadiabaticfreeexpansion aprocess(bothwithfixedinternalenergy). J 7 1 1. Introduction (2) there is a swallow tail feature onG−T graph (G is Gibbs freeenergy)forcertainfixedPandthecrosspointisidentified ] h Predicted by general relativity, black hole is a “simple” ob- asthephasetransitionpoint. Inanalogywithnormalfluidther- tject and it is an interdisciplinary research field of general rel- - modynamic system, we have gained a much better understand pativity, quantum mechanics and thermodynamics. For these of the charged AdS black hole’s properties. In Ref.[18], the ereasons, black hole has always been an interesting topic. At blackholemoleculesareidentifiedandareusedtomeasurethe h early times, black hole is thought to be a dead star which ab- [ microscopicdegreesoffreedom. InRef.[19],thechargedAdS sorbseverything,andnothingcanescapefromit. While,inthe blackholefluidisusedtodesignheatengines. InRef.[20],the 170s, Bekenstein found that a black hole possess temperature Joule-Thomson expansion of charged AdS black hole fluid is v and entropy[1, 2]. Bardeen, Carter and Hawking established 2 studied,processofwhichcanbeusedonrefrigeration. thefourlawsofblackholedynamics[3]. ThenHawkingfound 6 6thatblackholeradiateandreassuredtheconceptofblackhole 4temperature[4]. Thus the four dynamic laws become the four 0thermodynamic laws and black hole is believed to be a ther- Innormalthermodynamicphysics,weareveryinterestedin . thefluids’adiabaticprocesses,astheyareoftenusedonrefrig- 1modynamic system. As time passes, new interesting discov- 0eries are found, such as the Hawking-Page phase transition in eration in our daily life. Such as the adiabatic throttling pro- 7 cess,thereversibleadiabaticprocess(duringwhichtheentropy theSchwarzschild-AdSblackhole[5]andthefirstorderphase 1 S isconstant)andtheadiabaticfreeexpansionprocess(during transitioninthechargedAdSblackhole[6,7]. Blackholeasa : vthermodynamicsystemisfurtherunderstood. whichtheinternalenergyU isconstant). Inthispaper,wewill i investigate all the possible adiabatic processes for the charged X Inrecentyears,treatingthecosmologicalconstantasather- modynamical variable related to the dynamic pressure P (P = AdS black hole and compare them with those in normal ther- r a−Λ/(8π))[8], the thermodynamic properties of various AdS modynamic systems, hope to gain a better understand of the chargedAdSblackhole’sproperties. blackholes[9,10,11,12,13,14,15,16]inthisextendedphase space have beenextensively studied. Focusingon the charged AdSblackhole[8,17],itsthermodynamicsarefoundtosharea lotsimilaritieswiththatofVanderWaalsgases. Forexample, The rest of our paper is organized as follows. In section 2, forboththethermodynamicsystems,(1)thereisanoscillating webrieflyintroducethefirstthermodynamiclawandthermody- behavioronP−Vgraph(Visvolume)forcertainfixedT which namicfunctionsofchargedAdSblackholewhichisestablished signalsaphasetransitionphenomenonandthephasetransition in Ref.[8]. In section 3, we use a general method to find all pointcanalsobedeterminedbytheMaxwell’sequalarealaw; the possible adiabatic processes for a AdS black hole thermo- dynamic system in canonical ensemble. For the charged AdS blackhole,wefindtwokindsofadiabaticprocesses.Thentheir ∗Correspondingauthorat: DepartmentofPhysics,InstituteofTheoretical thermodynamics are studied. In the last section 4, we make a Physics,BeijingNormalUniversity,Beijing,100875,China Emailaddress:[email protected](WenbiaoLiu) conclusionanddiscussion. PreprintsubmittedtoElsevier January18,2017 2. ThermodynamicsofChargedAdSBlackHolesintheEx- ThecorrespondingSmarrrelationis tendedPhaseSpace M =2(TS −VP)+ΦQ, (11) In this section, we will give a brief review of the ther- modynamics of charged AdS black holes in the extended whichcanbederivedbyadimensionalscalingargument[29]. phase space mainly based on Refs.[8]. For a detail and ex- ThefreeenergyofthechargedAdSblackholesystemisthe tended knowledge of this subject, one can consult the related totalaction, Refs.[17, 21, 19, 20, 22, 23, 24, 18, 25, 26, 27, 28] and refer- I = IEM+Is+Ic. (12) encestherein. I istheabovebulkaction,I isasurfaceterm[8] EM s TheEinstein-Maxwellbulkactionreads (cid:90) 1 (cid:90) √ IEM =−161π d4x√−g(R−2Λ−F2), (1) Is = −8π ∂Md3x hK 1 (cid:90) √ where Λ = −3/l2, the cosmological constant. A spherical −4π d3x hnaFabAb, (13) ∂M chargedAdSblackholeisthisaction’ssolution.Themetricand theU(1)fieldarewritteninSchwarzschild-likecoordinatesas and Ic is a counter term induced to cure the infrared divergences[30, 31]. The total action is first calculated in ds2 =−f(r)dt2+ dr2 +r2dΩ2, (2) Refs.[32,33]andreads f(r) 2 β 3l2Q2 I = (l2r+−r+3 + ). (14) Q 4l2 r+ F =(dA) , A =− (dt) . (3) ab ab a r a Associating it with the Gibbs free energy (G) and identifying Here,dΩ2 istheelementontwodimensionalsphereandfunc- Mastheenthalpy(H),onefinds 2 tion f(r)isgivenby 1 1 3Q2 f(r)=1− 2M + Q2 + r2, (4) G = 4(r+− l2r+3 + r+ ) r r2 l2 = TS −2VP+ΦQ= M−TS = H−TS. (15) withMtheADMmassoftheblackhole,Qthetotalchargeand These two thermodynamic functions are self-consistent. Then ltheAdScurvatureradius. the differential formula of Gibbs free energy is easily derived Thepositionoftheblackholeeventhorizonisdeterminedas fromEq.(10) thelargerrootof f(r+)=0whichleadsto dG =−SdT +VdP+ΦdQ. (16) 1 Q2 r3 M = (r++ + +). (5) 2 r+ l2 3. TwoKindsofAdiabaticProcesses Theblackholetemperatureis In the above section, enthalpy and Gibbs free energy have T = f(r+)(cid:48) = 1 (M + r+ − Q2) beenidentified.Fromthem,theotherthermodynamicfunctions 4π 2π r+2 l2 r+3 can be easily derived. In this paper, we are interested in the 1 3r2 Q2 internalenergy = (1+ + − ). (6) 4πr+ l2 r+2 U = M−PV =2TS −3VP+ΦQ Theentropyis = r+ + Q2, (17) A 2 2r+ S = , A=4πr2, (7) + 4 anditsdifferentialformula andtheelectricpotentialΦ,measuredatinfinitywithrespectto dU =TdS −PdV+ΦdQ. (18) thehorizon,is Q Φ= . (8) Fromalltheabovethermodynamicfunctions,weareconvinced r+ that a system with fixed Q corresponds to canonical ensemble Identifying the thermodynamic volume and the correspond- and a system with variable Q corresponds to grand canonical ingpressureas ensemble. Since the adiabatic system is canonical ensemble, 4 3 wewillonlyconsiderthefixedQcasesfromnowon, V = πr3, P= , (9) + 3 8πl2 dU =TdS −PdV. (19) the solution obeys the first law of black hole thermodynamics Asweknow,thechangeofasystem’sinternalenergy(∆U) insuchanextended(includingPandVvariables)phasespace has two sources, one is the heat absorbed by the system from dM =TdS +ΦdQ+VdP. (10) theoutersystem(∆Q ),theotheristheworkdonebytheouter h 2 system(ortheminusworkdonebythesystem−∆W). Thuswe 25 have P ∆U =∆Q −∆W. (20) 20 h Q=1 ComparingwithEq.(19),wecanidentify 15 dQ =TdS, dW = PdV. (21) 10 h Duringtheadiabaticprocesses,wehave 5 dQh =TdS =0, (22) 0 r+ 0.4 0.6 0.8 1.0 orequivalently 3.0 S dU =−dW =−PdV. (23) Q=1 2.5 From TdS = 0, it is easy to find that there are two kinds 2.0 ofadiabaticprocesses, oneisT = 0process, theotherisr+ = constprocess. 1.5 FromdU =−PdV,recallingtheformulaofUinEq.(17),we 1.0 have 0.5 d(r2+ + 2Qr2+)=−4πPr+2dr+ 0.0 0.4 0.6 0.8 r+1.0 3.5 1 Q2 M ⇐⇒ (2 − 2r2)dr+ =−4πPr+2dr+. (24) 3.0 + Q=1 Onecanalsofindthattherearetwocases,oneisP= 1 (Q2 − 2.5 1), the other is r+ = const. For the first case, plug it8πirn+2tor+2the 2.0 temperatureformulaEq.(6),onegetT =0. Sothesetwomethodstoderiveallthepossibleadiabaticpro- 1.5 cessesareequivalent. Inthefollowingsection,wewillanalyse r+ 1.0 thederivedtwoadiabaticprocessesrespectively. 0.4 0.6 0.8 1.0 3.5 3.1. Zerotemperatureadiabaticprocess G 3.0 Inthiscase,wehavealreadyfoundthat Q=1 1 Q2 2.5 T =0, P= ( −1). (25) 8πr2 r2 + + 2.0 r2 ≤ Q2 is required to make sure that the pressure is positive. + 1.5 The three thermodynamic functions (enthalpy M, Gibbs free r+ energyGandinternalenergyU)aredeterminedas 1.0 0.4 0.6 0.8 1.0 M = r+(1+ 2Q2), 2.5 U 3 r2 + G = r+(1+ 2Q2), Q=1 3 r2 2.0 + U = r+(1+ Q2). (26) 2 r2 1.5 + M and G are found to be equal to each other. It is easy to r+ checkthatduringtheadiabaticexpansionprocess0<r+2 ≤ Q2, 1.0 0.4 0.6 0.8 1.0 volume V and entropy S are increasing functions; pressure P, enthalpy M, Gibbs free energy G and internal energy U are decreasing functions. We plot the pressure, entropy, enthalpy, Figure1: Thepressure P, entropyS, enthalpy M, GibbsfreeenergyG and Gibbs free energy and internal energy functions for Q = 1 in internalenergyUvarywithrespecttoblackholeradiusr+forQ=1. Foran Fig.1. adiabaticexpansionprocess,wefindthattheentropywillincreasedenotingits anirreversibleprocess;thepressure,enthalpy,Gibbsfreeenergyandinternal For the adiabatic expansion process, the increasing of en- energywilldecrease. tropy denotes that it is an irreversible process; the decreasing 3 ofinternalenergyforfixedtemperatureT = 0denotesthatthe 1.5 T system’s potential energy is transformed to the work W done Q=1, r+=0.5 bythesystemtotheoutersystemanditisdecreasing. Forthe extremalstateT = P=0,wefindthatM =G =U = Q. 1.0 Comparing with the three famous adiabatic processes (the adiabatic throttling process, the reversible adiabatic process withfixedentropyandtheadiabaticfreeexpansionprocesswith 0.5 fixedinternalenergy)innormalthermodynamicsystemmen- P tioned in the introduction, the adiabatic expansion process in 0.0 chargedblackholesystemismuchliketheadiabaticthrottling 0.5 1.0 1.5 2.0 process,asbothprocessesareirreversibleandtheworkisdone 1.5 S bythesystemtotheoutersystemduringwhichnoneofentropy Q=1, r+=0.5 or internal energy are fixed. But as the temperature is already zero, this“adiabaticthrottlingprocess”forchargedblackhole 1.0 cannotbeusedonrefrigeration. 3.2. Isochoreadiabaticprocess 0.5 Inthiscase,r+ =const,thequantitiesasfunctionsofvariable P Parerewrittenas 0.0 0.5 1.0 1.5 2.0 1 Q2 T =2Pr++ (1− ), 2.4 M 4πr+ r+2 2.2 Q=1, r+=0.5 S =πr2, + 2.0 M = r+(1+ Q2 + 8πPr2), 1.8 + 2 r2 3 + 1.6 G = r+(1+ 3Q2 − 8πPr+2), 1.4 4 r2 3 + 1.2 U = r+(1+ Q2). (27) 1.0 P 2 r2 0.0 0.5 1.0 1.5 2.0 + 1.6 From the temperature formula, the positivity of T and P re- G quiresthatr2 ≤ Q2andP≥ 1 (Q2 −1). 1.5 Q=1, r+=0.5 + 8πr+2 r+2 Duringtheisochoreadiabaticprocess,theentropyandinter- 1.4 nalenergyarefixed; thetemperature, enthalpyandGibbsfree 1.3 energy are all proportional to pressure. We plot the tempera- ture, entropy, enthalpy, Gibbs free energy and internal energy 1.2 functions for Q = 1,r+ = 0.5 which denotes P ≥ 0.477 in Fig.2. 1.1 P Fixed entropy and internal energy denotes it is a reversible 1.0 process. Whenthepressureisincreasing,thetemperaturewill 0.0 0.5 1.0 1.5 2.0 increase which denotes the system’s kinetic energy is increas- 2.5 U ing and as the internal energy is fixed, the potential energy is Q=1, r+=0.5 2.0 decreasing. For this process, the system’s potential energy is transformedtoitskineticenergy.Whenthepressureisdecreas- 1.5 ing, the process is reversal to the pressure increasing case and the system’s kinetic energy is transformed to its potential en- 1.0 ergy. 0.5 Also comparing with the three adiabatic processes (the adi- P abatic throttling process, the reversible adiabatic process with 0.0 fixed entropy and the adiabatic free expansion process with 0.5 1.0 1.5 2.0 fixedinternalenergy)innormalthermodynamicsystemmen- tioned in the introduction, the isochore adiabatic process in Figure2: Thetemperature,entropy,enthalpy,Gibbsfreeenergyandinternal charged black hole system is much like a combination of the energyvarywithrespecttoblackholepressurePforQ = 1,r+ = 0.5where reversible adiabatic process and the adiabatic free expansion minimumPmin ≈ 0.477. Foranisochoreadiabaticprocess, theentropyand internalenergyarefixedwhichdenotesitisareversibleprocess;thetempera- process,astheentropyandinternalenergyarefixedduringthe tureisincreasingastheincreaseofpressurewhichdenotesthesystem’skinetic process. One can also say that the corresponding “reversible energyisincreasingandastheinternalenergyisfixed,thepotentialenergyis decreasing. 4 adiabatic process” and “adiabatic free expansion process” in Acknowledgments chargedblackholesystemareidenticaltoeachotherwhichbe- comes the isochore adiabatic process. As during the isochore ThisworkissupportedbyNSFCwithGrantNos. 11235003, adiabaticprocess,whenthepressureisdecreasing,thetemper- 11175019and11178007. aturewilldecrease,soitcanalwaysbeusedonrefrigeration. References 4. ConclusionandDiscussion [1] J.D.Bekenstein, Black holes and the second law, Lett.Nuovo Cimento 4(737). ChargedAdSblackholeisathermodynamicsystem. Treat- [2] J.D.Bekenstein,Blackholesandentropy,Phys.Rev.D7(8)(1973)2333. ing its pressure as P = −Λ/(8π), we reviewed how the first [3] J.M.Bardeen, B.Carter, S.W.Hawking, Thefourlawsofblackhole mechanics,Commun.Math.Phys.31(161). thermodynamic law and the thermodynamic functions in this [4] S.W.Hawking,Particlecreationbyblackholes,Commun.Math.Phys.43 extendedphasespaceweredeterminedinsection2. Insection (1975)199. 3,forthecanonicalensemble,focusingontheinternalenergy, [5] S.W.Hawking,D.N.Page,ThermodynamicsofBlackHolesinanti-De SitterSpace,Commun.Math.Phys.87,577(1983). weintroducedageneralmethodtofindallthepossibleadiabatic [6] A.Chamblin, R.Emparan, C.Johnson, R.Myers, ChargedAdSblack processes. Thereareonlytwokindsofadiabaticprocessesfor holesandcatastrophicholography,Phys.Rev.D.60(6)064018. the charged AdS black hole, one is the zero temperature adia- [7] A.Chamblin,R.Emparan,C.Johnson,R.Myers,Holography,thermo- dynamics, andfluctuationsofchargedAdSblackholes, Phys.Rev.D. baticprocess,theotheristheisochoreadiabaticprocess. 60(10)(1999)104026. Thezerotemperatureadiabaticprocessisirreversible. There [8] D.Kubiznˇa´k,R.B.Mann,P-VcriticalityofchargedAdSblackholes, are contraction and expansion processes which are reversal to JHEP7(2012)(????)33. eachother. Soweonlyinvestigatetheexpansionprocess. Dur- [9] R.-G.Cai,L.-M.Cao,L.Li,R.-Q.Yang,P-Vcriticalityintheextended phasespaceofGauss-BonnetblackholesinAdSspace,JHEP9(2013) ingthisprocess, thereisworkdonebythesystemtotheouter (????)005. system. So the system’s internal energy is decreasing. As the [10] J.-X.Mo,W.-B.Liu,EhrenfestschemeforP-Vcriticalityofhigherdi- temperature is fixed which means the system’s kinetic energy mensionalchargedblackholes, rotatingblackholesandGauss-Bonnet is fixed, so the system’s potential energy is decreasing which AdSblackholes,Phys.Rev.D89(8)(2014)084057. [11] S.-W.Wei,Y.-X.Liu,Triplepointsandphasediagramsintheextended is transformed to the work. This adiabatic process is found to phasespaceofchargedGauss-BonnetblackholesinAdSspace, Phys. muchliketheadiabaticthrottlingprocessinnormalthermody- Rev.D90(4)(2014)044057. namicsystem,exceptthatitcannotbeusedonrefrigeration. [12] J.Suresh,R.Tharanath,V.C.Kuriakose,Aunifiedthermodynamicpic- ture of Ho?ava-Lifshitz black hole in arbitrary space time, JHEP 01 Theisochoreadiabaticprocessisreversible. Therearepres- (2015)019. sure increase and decrease processes. During the process, the [13] A.M.Frassino,D.Kubiznak,R.B.Mann,F.Simovic,MultipleReentrant system’s entropy and internal energy are fixed. Increasing the PhaseTransitionsandTriplePointsinLovelockThermodynamics,JHEP pressure,thetemperaturewillincrease,sodoesthesystem’ski- 09(2014)080. [14] E.Caceres,P.H.Nguyen,J.F.Pedraza,Holographicentanglementen- neticenergy. Asaresult,system’spotentialenergyisdecreas- tropy and the extended phase structure of STU black holes, JHEP 09 ing which is transformed to system’s kinetic energy. Decreas- (2015)184. ingthepressure,theprocessisreversaltothatofincreasingthe [15] J.Xu,L.-M.Cao,Y.-P.Hu,P-Vcriticalityintheextendedphasespaceof blackholesinmassivegravity,Phys.Rev.D91(12)(2015)124033. pressure. This adiabatic process is found to much like a com- [16] X.-X.Zeng,X.-M.Liu,L.-F.Li,PhasestructureoftheBorn-Infeld-anti- binationofthereversibleadiabaticprocess(withfixedentropy) de Sitter black holes probed by non-local observables, Eur. Phys. J. C and the adiabatic free expansion process (with fixed internal 76(11)(2016)616. energy) in normal thermodynamic system, as the entropy and [17] E.Spallucci,A.Smailagic,Maxwell’sequalarealawforchargedAnti-de Sitterblackholes,Phys.Lett.B723(2013)436–441. internalenergyarefixedduringtheprocess. Theisochoreadia- [18] S.-W.Wei,Y.-X.Liu,InsightintotheMicroscopicStructureofanAdS baticprocesscanalwaysbeusedonrefrigeration,anditisused BlackHolefromaThermodynamicalPhaseTransition,Phys.Rev.Lett. todesignheatengineinRef.[19]. 115(11)(2015)111302. Intheend,wewillliketoemphasizeonthemethodusedto [19] C.V.Johnson,Holographicheatengines,Class.Quant.Grav.31(20). [20] d.O¨kcu¨,E.Aydiner,Joule-ThomsonExpansionofChargedAdSBlack findalltheadiabaticprocesses. Thechangeofacanonicalen- Holes,arXiv:1611.06327. semblesystem’sinternalenergycomposesonlytwoparts,one [21] E.Spallucci,A.Smailagic,Maxwell’sequalarealawandtheHawking- is the heat absorbed by the system from the outer system, the Pagephasetransition,JournalofGravity2013(????)525696. [22] S.-W.Wei,Y.-X.Liu,Clapeyronequationsandfittingformulaoftheco- other is the work done by the outer system. So there are two existencecurveintheextendedphasespaceofthechargedAdSblack waystofindalltheadiabaticprocesses,onewayistoconsider holes,Phys.Rev.D91(2015)044018. theheatdifferentialtermsintheinternalenergydifferentialfor- [23] H.-H. Zhao, L.-C. Zhang, M.-S. Ma, R. Zhao, Phase transition and mula which should be zero, the other way is to calculate the ClapeyronequationofblackholesinhigherdimensionalAdSspacetime, Class.Quant.Grav.32(14)(2015)145007. minus work done by the system which should be equal to the [24] J.-L.Zhang,R.-G.Cai,H.Yu,Phasetransitionandthermodynamicalge- change of system’s internal energy. This method can be used ometryofReissner-Nordstr?m-AdSblackholesinextendedphasespace, onotherkindsofAdSblackholesystems. Forthemorecom- Phys.Rev.D91(4)(2015)044028. plicatedAdSblackholesystemswithmoreparameters,theadi- [25] P.H.Nguyen,Anequalarealawforholographicentanglemententropyof theAdS-RNblackhole,JHEP12(2015)139. abaticprocessesshouldbemoreabundantthanjusttwokinds. [26] S.-Q.Lan,J.-X.Mo,W.-B.Liu,AnoteonMaxwell’sequalarealawfor blackholephasetransition,Eur.Phys.J.C75(9)(2015)419. 5 [27] J. Sadeghi, B. Pourhassan, M. Rostami, P-V criticality of logarithm- correcteddyonicchargedAdSblackholes,Phys.Rev.D94(6)(2016) 064006. [28] A.Mandal,S.Samanta,B.R.Majhi,Phasetransitionandcriticalphe- nomenaofblackholes: Ageneralapproach,Phys.Rev.D94(6)(2016) 064069. [29] D.Kastor,S.Ray,J.Traschen,EnthalpyandtheMechanicsofAdSBlack Holes,Class.Quant.Grav.26(195011). [30] R.Emparan,C.V.Johnson,R.C.Myers,Surfacetermsascounterterms intheAdS-CFTcorrespondence,Phys.Rev.D60(104001). [31] R.B.Mann,Misnerstringentropy,Phys.Rev.D60(104047). [32] A.Chamblin,R.Emparan,C.V.Johnson,R.C.Myers,Holography,ther- modynamics,andfluctuationsofchargedAdSblackholes,Phys.Rev.D 60(1040026). [33] M. M. Caldarelli, G. Cognola, D. Klemm, Thermodynamics of Kerr- Newman-AdS black holes and conformal field theories, Class. Quant. Grav.17(2). 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.