ebook img

Additive Manufacturing of Mechatronic Integrated Devices PDF

230 Pages·2022·13.078 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Additive Manufacturing of Mechatronic Integrated Devices

Light Engineering für die Praxis Friedrich Wilhelm Proes Additive Manufacturing of Mechatronic Integrated Devices Edited by Claus Emmelmann 123 Additive Manufacturing of Mechatronic Integrated Devices Vom Promotionsausschuss der Technischen Universität Hamburg zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Friedrich Wilhelm Proes aus Hamburg 2022 1. Gutachter: Prof. Dr.-Ing. Claus Emmelmann 2. Gutachter: Prof. Dr.-Ing. Wolfgang Krautschneider Tag der mündlichen Prüfung: 03. März 2022 Light Engineering für die Praxis Reiheherausgegebenvon ClausEmmelmann,Hamburg,Deutschland Technologie- und Wissenstransfer für die photonische Industrie ist der Inhalt dieser Buchreihe. Der Herausgeber leitet das Institut für Laser- und Anlagensystemtechnik an derTechnischenUniversitätHamburgsowiedieFraunhofer-EinrichtungfürAdditivePro- duktionstechnologien IAPT. Die Inhalte eröffnen den Lesern in der Forschung und in UnternehmendieMöglichkeit,innovativeProdukteundProzessezuerkennenundsoihre Wettbewerbsfähigkeit nachhaltig zu stärken. Die Kenntnisse dienen der Weiterbildung von Ingenieuren und Multiplikatoren für die Produktentwicklung sowie die Produktions- und Lasertechnik, sie beinhalten die Entwicklung lasergestützter Produktionstechnolo- gien und der Qualitätssicherung von Laserprozessen und Anlagen sowie Anleitungen für Beratungs- und Ausbildungsdienstleistungen für die Industrie. Friedrich Wilhelm Proes Additive Manufacturing of Mechatronic Integrated Devices FriedrichWilhelmProes Fraunhofer-EinrichtungfürAdditive ProduktionstechnologienIAPT Hamburg,Germany ISSN2522-8447 ISSN2522-8455 (electronic) LightEngineeringfürdiePraxis ISBN978-3-031-16220-6 ISBN978-3-031-16221-3 (eBook) https://doi.org/10.1007/978-3-031-16221-3 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG 2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whetherthewhole orpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownor hereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgive awarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthat mayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsand institutionalaffiliations. ResponsibleEditor:AlexanderGruen ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Abstract In this dissertation a new process chain for the Additive Manufacturing of Mechatronic Integrated Devices (AMMID) is described, which provides a new way to manufacture 3- dimensional electronic devices based on the selective laser sintering (SLS) process using laser direct structuring (LDS) and metallization. The AMMID meets the rising demand for highly functionalized parts, increasing individualization and shortening development cycles for electronic products. The development for this process chain is based on a comprehensive literature review that indicates that an SLS-based process chain has great potential to produce 3-dimensional electronic devices with properties and with the future perspective of being suitable for an individualized mass production. The biggest, initial, technical hurdle is an unstable SLS process using a conventional LDS additive. The compound of SLS material and LDS ad- ditive was analyzed with DSC, which shows that the additive changes the melting behavior of the polymer by reducing the sintering window. A fine metal powder as an alternative additive that does not affect the melting behavior as much, enables a stable process. To choose a suitable particle size and content for the metal powder an analytical material model is provided, that predicts the additive particle distribution within the material. This material model deepens the understanding of the activation mechanism during laser acti- vation, provides hands-on information for powder preparation and it is applied for the design of the experiment for the development of the process chain with the new material. Preliminary experiments are conducted along with the insights of the material model, which prove that redeposition is the main activation mechanism during laser activation. Based on this, the process chain is developed, starting with a determination of a suitable additive content. The material composition of a PA12 powder containing 2 wt.% of a cop- per powder with a mean particle diameter of 3.5 μm. With regard to the laser activation, working laser parameters are developed (working parameter set feasible for all used post- process treatments: PRF = 1 kHz, d = 25 μm, v = 25 mm/s, t = 20 ns and P = 1.07 W). h s l In this parameter development it is shown, that only closely located laser spots, enabling interaction of the laser pulses, are capable of activating the surface, while single laser pulses under applied conditions are not. By adding a post-process treatment as additional process step into the process chain, the quality of metallization and the size of design features could be improved. Chemical smoothing resulted in a complete reduction of un- wanted metallization on non-activated surfaces. Conductor tracks with the minimal width of 300 μm could be realized. The process chain could be applied to demonstrator parts such as a drone housing and a PSU panel of an aircraft. Thus, this dissertation has raised the technology readiness level (TRL) from TRL2 to TRL6. VI Abstract Finally, an economic consideration provides insights on the cost structure of parts pro- duced with the AMMID process. A comparison of AMMID and injection molding shows economic viability for small lot sizes, 400 parts in case of the drone housing and 150 parts in case of the PSU panel. Finally, the analysis of the cost structure gives advice which future developments in the process chain have the greatest effect on costs and provides prioritization. Table of contents Abstract V Table of contents VII List of figures X List of tables XIV List of acronyms XV List of formula symbols XVIII 1 Introduction 1 1.1 Motivation and goal 2 1.2 History 4 1.3 Structure of this work 5 2 State of the art 7 2.1 Additive manufacturing technologies 7 2.2 Selective laser sintering 12 2.2.1 Data preparation 13 2.2.2 System components 15 2.2.3 Machine and powder preparation 16 2.2.4 Process 17 2.2.5 Post process 19 2.2.6 Part properties 22 2.2.7 Cost 23 2.3 3D Electronics 24 2.4 LDS process 25 2.4.1 Injection molding 26 2.4.2 Laser activation 27 2.4.3 Electroless plating with copper 32 2.4.4 Placement and interconnection 35 2.4.5 Market & Applications 35 2.4.6 ADDIMID 38 2.4.7 Cost 41 2.5 Additively manufactured electronics (AME) 42 2.5.1 SLS-based approaches for AME 43 2.5.2 Stereolithography (SLA) 48 2.5.3 Fused Filament Fabrication (FFF) 48 2.5.4 Inkjet 51

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.