ebook img

Additional Maths 360 Solutions PDF

556 PagesΒ·2014Β·11.798 MBΒ·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Additional Maths 360 Solutions

Additional Maths 360 solutions (Unofficial) [29 Sept 2014] Visit sleightofmath.com for up-to-date pdf and video solutions. Authors: Daniel and Samuel from Sleight of Math Disclaimer: Sleight of Math has no affiliations with the publisher of Additional Maths 360 i.e. Marshall Cavendish Table of Contents Ex 1.1 ......................................................................................................... 3 Ex 6.1 ................................................................................................... 143 Ex 1.2 ......................................................................................................... 9 Ex 6.2 ................................................................................................... 149 Ex 1.3 ....................................................................................................... 20 Ex 6.3 ................................................................................................... 153 Ex 1.4 ....................................................................................................... 29 Ex 6.4 ................................................................................................... 162 Rev Ex 1 .................................................................................................. 35 Rev Ex 6 .............................................................................................. 167 Ex 2.1 ....................................................................................................... 42 Ex 7.1 ................................................................................................... 174 Ex 2.2 ....................................................................................................... 51 Ex 7.2 ................................................................................................... 180 Ex 2.3 ....................................................................................................... 55 Ex 7.3 ................................................................................................... 184 Ex 2.4 ....................................................................................................... 60 Ex 7.4 ................................................................................................... 189 Rev Ex 2 .................................................................................................. 63 Ex 7.5 ................................................................................................... 193 Rev Ex 7 .............................................................................................. 196 Ex 3.1 ....................................................................................................... 67 Ex 3.2 ....................................................................................................... 72 Ex 8.1 ................................................................................................... 202 Ex 3.3 ....................................................................................................... 78 Ex 8.2 ................................................................................................... 209 Ex 3.4 ....................................................................................................... 81 Rev Ex 8 .............................................................................................. 224 Ex 3.5 ....................................................................................................... 86 Ex 3.6 ....................................................................................................... 91 Ex 9.1 ................................................................................................... 233 Rev Ex 3 .................................................................................................. 98 Ex 9.2 ................................................................................................... 242 Rev Ex 9 .............................................................................................. 252 Ex 4.1 .................................................................................................... 103 Ex 4.2 .................................................................................................... 108 Ex 10.1 ................................................................................................. 259 Rev Ex 4 ............................................................................................... 114 Ex 10.2 ................................................................................................. 266 Ex 10.3 ................................................................................................. 272 Ex 5.1 .................................................................................................... 118 Rev Ex 10............................................................................................ 280 Ex 5.2 .................................................................................................... 127 Rev Ex 5 ............................................................................................... 138 Ex 11.1 ................................................................................................. 288 Ex 11.2 ................................................................................................. 291 Ex 11.3 ................................................................................................. 298 Rev Ex 11............................................................................................ 319 Β© Daniel & Samuel sleightofm ath.com 1 A-math tuition πŸ“ž9133 9982 Additional Maths 360 solutions (Unofficial) [29 Sept 2014] Visit sleightofmath.com for up-to-date pdf and video solutions. Authors: Daniel and Samuel from Sleight of Math Disclaimer: Sleight of Math has no affiliations with the publisher of Additional Maths 360 i.e. Marshall Cavendish Ex 12.1 ................................................................................................. 326 Ex 18.1 ................................................................................................. 495 Ex 12.2 ................................................................................................. 330 Ex 18.2 ................................................................................................. 503 Rev Ex 12 ............................................................................................ 339 Ex 18.3 ................................................................................................. 509 Ex 18.4 ................................................................................................. 512 Ex 13.1 ................................................................................................. 347 Rev Ex 18............................................................................................ 517 Ex 13.2 ................................................................................................. 356 Ex 13.3 ................................................................................................. 366 Ex 19.1 ................................................................................................. 523 Rev Ex 13 ............................................................................................ 376 Ex 19.2 ................................................................................................. 530 Rev Ex 19............................................................................................ 535 Ex 14.1 ................................................................................................. 383 Ex 14.2 ................................................................................................. 390 Ex 20.1 ................................................................................................. 539 Ex 14.3 ................................................................................................. 396 Rev Ex 20............................................................................................ 548 Ex 14.4 ................................................................................................. 400 Rev Ex 14 ............................................................................................ 407 Ex 15.1 ................................................................................................. 410 Ex 15.2 ................................................................................................. 418 Ex 15.3 ................................................................................................. 421 Ex 15.4 ................................................................................................. 423 Rev Ex 15 ............................................................................................ 430 Ex 16.1 ................................................................................................. 436 Ex 16.2 ................................................................................................. 445 Rev Ex 16 ............................................................................................ 454 Ex 17.1 ................................................................................................. 460 Ex 17.2 ................................................................................................. 470 Ex 17.3 ................................................................................................. 479 Rev Ex 17 ............................................................................................ 488 Β© Daniel & Samuel sleightofm ath.com 2 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.1 2(a) y = 2βˆ’x βˆ’(1) Ex 1.1 2x2+xy+1 = 0 βˆ’(2) 1(a) y = 2x+1 βˆ’(1) y = x2+2xβˆ’3 βˆ’(2) sub (1) into (2): 2x2+x(2βˆ’x)+1 = 0 sub (1) into (2): 2x2+2xβˆ’x2+1 = 0 2x+1 = x2+2xβˆ’3 x2+2x+1 = 0 x2βˆ’4 = 0 (x+1)2 = 0 (x+2)(xβˆ’2) = 0 x = βˆ’1 x = βˆ’2 βœ“ or x = 2 βœ“ y|x=βˆ’1 = 2βˆ’(βˆ’1) = 3 y| = 2(βˆ’2)+1 y| = 2(2)+1 β‡’ (βˆ’1,3) βœ“ x=βˆ’2 x=2 = βˆ’3 βœ“ = 5 βœ“ 2(b) y = 1βˆ’3x βˆ’(1) x2+y2 = 5 βˆ’(2) 1(b) y = 2+x βˆ’(1) y = 2x2βˆ’5xβˆ’6 βˆ’(2) sub (1) into (2): sub (1) into (2): x2+(1βˆ’3x)2 = 5 2+x = 2x2βˆ’5xβˆ’6 x2+(1βˆ’6x+9x2) = 5 2x2βˆ’6xβˆ’8 = 0 10x2βˆ’6xβˆ’4 = 0 x2βˆ’3xβˆ’4 = 0 5x2βˆ’3xβˆ’2 = 0 (5x+2)(xβˆ’1) = 0 (x+1)(xβˆ’4) = 0 2 x = βˆ’1 βœ“ or x = 4 βœ“ x = βˆ’ or x = 1 5 y| = 2+(βˆ’1) y| = 2+(4) 2 x=βˆ’1 x=4 y| = 1βˆ’3(βˆ’ ) y| = 1βˆ’3(1) = 1 βœ“ = 6 βœ“ x=βˆ’25 5 x=1 11 = = βˆ’2 5 1(c) 2x+y = 4 2 11 β‡’ (βˆ’ , ) βœ“ β‡’ (1,βˆ’2) βœ“ y = 4βˆ’2x βˆ’(1) 5 5 y2βˆ’4x = 0 βˆ’(2) 2(c) 3x+2y = 1 sub (1) into (2): 2y = 1βˆ’3x (4βˆ’2x)2βˆ’4x = 0 1βˆ’3x y = βˆ’(1) (16βˆ’16x+4x2)βˆ’4x = 0 2 4x2βˆ’20x+16 = 0 x2βˆ’5x+4 = 0 3x2+2y2 = 11 βˆ’(2) (xβˆ’1)(xβˆ’4) = 0 sub (1) into (2): 2 x = 1 or x = 4 βœ“ 3x2+2(1βˆ’3x) = 11 2 y| = 4βˆ’2(1) y| = 4βˆ’2(4) x=1 x=4 3x2+2(1βˆ’6x+9x2) = 11 = 2 βœ“ = βˆ’4 βœ“ 4 6x2+(1βˆ’6x+9x2) = 22 15x2βˆ’6xβˆ’21 = 0 5x2βˆ’2xβˆ’7 = 0 (5xβˆ’7)(x+1) = 0 7 x = or x = βˆ’1 5 7 1βˆ’3( ) 1βˆ’3(βˆ’1) y| = 5 y| = x=7 2 x=βˆ’1 2 5 8 = βˆ’ = 2 5 7 8 β‡’ ( ,βˆ’ ) βœ“ β‡’ (βˆ’1,2) βœ“ 5 5 Β© Daniel & Samuel sleightofm ath.com 3 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.1 3 x2 y 5(ii) Area = 216 βˆ’(1) + = 3 βˆ’(1) 4 3 xy = 216 x+y = 8 Perimeter = 60 y = 8βˆ’x βˆ’(2) 2x+2y = 60 x+y = 30 sub (2) into (1): y = 30βˆ’x βˆ’(2) x2 (8βˆ’x) + = 3 4 3 (3x2)+(32βˆ’4x) = 36 sub (2) into (1): 3x2βˆ’4xβˆ’4 = 0 x(30βˆ’x) = 216 (3x+2)(xβˆ’2) = 0 (30xβˆ’x2) = 216 x = βˆ’2 or x = 2 βœ“ x2βˆ’30x+216 = 0 3 (xβˆ’12)(xβˆ’18) = 0 4(i) x = 12 or x = 18 y| = 30βˆ’(12) y| = 30βˆ’(18) x=12 x=18 = 18 = 12 π‘₯ 𝑦 ∴ 12 m by 18 m βœ“ 4x+4y = 32 x+y = 8 6(a) 3xβˆ’2y = 1 y = 8βˆ’x βœ“ βˆ’(1) 2y = 3xβˆ’1 3xβˆ’1 y = βˆ’(1) 4(ii) x2+y2 = 34 βœ“ βˆ’(2) 2 4(iii) sub (1) into (2): (xβˆ’2)2+(2y+3)2 = 26 βˆ’(2) x2+(8βˆ’x)2 = 34 sub (1) into (2): x2+(64βˆ’16x+x2) = 34 (xβˆ’2)2 +[2(3xβˆ’1)+3]2 = 26 2x2βˆ’16x+30 = 0 2 x2βˆ’4x+4+(3xβˆ’1+3)2 = 26 x2βˆ’8x+15 = 0 x2βˆ’4x+4+(3x+2)2 = 26 (xβˆ’3)(xβˆ’5) = 0 x2βˆ’4x+4+(9x2+12x+4) = 26 x = 3 or x = 5 10x2+8x+8 = 26 y| = 5βœ“ y| = 3βœ“ x=3 x=5 10x2+8xβˆ’18 = 0 ∴ the length of the sides are 3cm & 5cm βœ“ 5x2+4xβˆ’9 = 0 (5x+9)(xβˆ’1) = 0 5(i) 𝑦 9 x = βˆ’ or x = 1 βœ“ π‘₯ 5 9 3(βˆ’ )βˆ’1 3(1)βˆ’1 Area = xy βœ“ y|x=βˆ’9 = 25 y|x=1 = 2 5 Perimeter = 2x+2y βœ“ 16 = βˆ’ βœ“ = 1 βœ“ 5 Β© Daniel & Samuel sleightofm ath.com 4 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.1 6(b) x2βˆ’2xy+y2 = 1 βˆ’(1) 7(a) xy+20 = 5x βˆ’(1) xβˆ’2y = 2 xβˆ’2yβˆ’3 = 0 βˆ’2y = βˆ’x+2 βˆ’2y = βˆ’x+3 1 1 3 y = xβˆ’1 βˆ’(2) y = xβˆ’ βˆ’(2) 2 2 2 sub (1) into (2): x2βˆ’2x(1xβˆ’1) +(1xβˆ’1)2 = 1 sub (2) into (1): 2 2 1 3 x( xβˆ’ )+20 = 5x x2βˆ’x2+2x +(1x2βˆ’x+1) = 1 2 2 4 (1x2βˆ’3x) +20 = 5x 2x +(1x2βˆ’x+1) = 1 2 2 4 1x2βˆ’13x+20 = 0 1x2+x+1 = 1 2 2 4 x2βˆ’13x+40 = 0 1x2+x = 0 (xβˆ’5)(xβˆ’8) = 0 4 x2+4x = 0 x = 5 or x = 8 x(x+4) = 0 y| = 1(5)βˆ’3 y| = 1(8)βˆ’3 x=5 x=8 2 2 2 2 x = 0 βœ“ or x = βˆ’4 βœ“ 5 = 1 = y| = 1(0)βˆ’1 y| = 1(βˆ’4)βˆ’1 2 x=0 2 x=βˆ’4 2 β‡’ (5,1) βœ“ β‡’ (8,5) βœ“ = βˆ’1 βœ“ = βˆ’3 βœ“ 2 7(b) 2xβˆ’y = 4 6(c) 3yβˆ’x = 3 βˆ’y = βˆ’2x+4 3y = x+3 1 y = 2xβˆ’4 βˆ’(1) y = x+1 βˆ’(1) 3 2 1 βˆ’ = 2 βˆ’(2) 2x2+4xyβˆ’3y = 0 βˆ’(2) 3y x sub (1) into (2): 2 1 sub (1) into (2): βˆ’ = 2 3(1x+1) x 2x2+4x(2xβˆ’4)βˆ’3(2xβˆ’4) = 0 3 2 βˆ’1 = 2 2x2+(8x2βˆ’16x) βˆ’6x+12 = 0 x+3 x (10x2βˆ’16x) βˆ’6x+12 = 0 2x βˆ’(x+3) = 2x(x+3) 2x βˆ’xβˆ’3 = 2x2+6x 10x2βˆ’22x+12 = 0 xβˆ’3 = 2x2+6x 5x2βˆ’11x+6 = 0 0 = 2x2+5x+3 (5xβˆ’6)(xβˆ’1) = 0 6 2x2+5x+3 = 0 x = or x = 1 5 (2x+3)(x+1) = 0 6 y| = 2( )βˆ’4 y| = 2(1)βˆ’4 3 x=6 5 x=1 x = βˆ’ βœ“ or x = βˆ’1 βœ“ 5 2 = βˆ’8 = βˆ’2 y| = 1(βˆ’3)+1 y| = 1(βˆ’1)+1 5 x=βˆ’32 3 2 x=βˆ’1 3 β‡’ (6,βˆ’8) βœ“ β‡’ (1,βˆ’2) βœ“ 1 2 5 5 = βœ“ = βœ“ 2 3 Β© Daniel & Samuel sleightofm ath.com 5 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.1 7(c) 3x+y = 1 9 3π‘₯ y = 1βˆ’3x βˆ’(1) 4π‘₯ (x+y)(x+2y) = 3 βˆ’(2) By Pythagoras Theorem, sub (1) into (2): (4x)2+(3x)2 = 152 [x+(1βˆ’3x)][x+2(1βˆ’3x)] = 3 16x2+9x2 = 225 (1βˆ’2x)(x+2βˆ’6x) = 3 25x2 = 225 (1βˆ’2x)(2βˆ’5x) = 3 x2 = 9 (5xβˆ’2)(2xβˆ’1) = 3 x = 3 or x = βˆ’3 (rej) 10x2βˆ’9x+2 = 3 10x2βˆ’9xβˆ’1 = 0 Width = 4(3) = 12 inch βœ“ (10x+1)(xβˆ’1) = 0 Height = 3(3) = 9 inch βœ“ 1 x = βˆ’ or x = 1 10 10(i) 1 y| = 1βˆ’3(βˆ’ ) y| = 1βˆ’3(1) x=βˆ’110 10 x=1 𝑦 5 13 = = βˆ’2 10 π‘₯ 1 13 β‡’ (βˆ’ , ) βœ“ β‡’ (1,βˆ’2) βœ“ 10 10 By Pythagoras’ Theorem, x2+y2 = 52 8 2x+y = 3 βˆ’(1) y x x2+y2 = 25 βœ“ βˆ’(1) 3xβˆ’y = 2 10(ii) yβˆ’x = 1 3xβˆ’2 = y y = x+1 βˆ’(2) y = 3xβˆ’2 βˆ’(2) sub (1) into (2): x2+(x+1)2 = 25 sub (2) into (1): x2+(x2+2x+1) = 25 2x 3xβˆ’2 2x2+2x+1 = 25 + = 3 3xβˆ’2 x 2x2+2xβˆ’24 = 0 2x2+(3xβˆ’2)2 = 3(3x2βˆ’2x) x2+xβˆ’12 = 0 2x2+(9x2βˆ’12x+4) = 9x2βˆ’6x (x+4)(xβˆ’3) = 0 11x2βˆ’12x+4 = 9x2βˆ’6x x = βˆ’4 βœ“ or x = 3 βœ“ 2x2βˆ’6x+4 = 0 y| = (βˆ’4)+1 y| = (3)+1 x2βˆ’3x+2 = 0 x=βˆ’4 x=3 = βˆ’3 βœ“ = 4 βœ“ (xβˆ’1)(xβˆ’2) = 0 x = 1 or x = 2 10(iii) ∡ length cannot be negative, y| = 3(1)βˆ’2 y| = 3(2)βˆ’2 x=1 x=2 x = 3,y = 4 = 1 = 4 β‡’ A(1,1) βœ“ β‡’ B(2,4) βœ“ Β© Daniel & Samuel sleightofm ath.com 6 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.1 11(i) x2+xy+ay = b 12(i) 1st eqn at {x = 2,y = 1} 12x2βˆ’5y2 = 7 (2)2+(2)(1)+a(1) = b At (1,p), 6+a = b 12(1)2βˆ’5(p)2 = 7 b = a+6 βˆ’(1) 12βˆ’5p2 = 7 βˆ’5p2 = βˆ’5 2ax+3y = b p2 = 1 at {x = 2,y = 1} p = Β±1 2a(2)+3(1) = b 4a+3 = b βˆ’(2) 2nd eqn sub (1) into (2): 2p2xβˆ’5y = 7 4a+3 = 6+a At (1,p), 3a = 3 2p2(1)βˆ’5(p) = 7 a = 1 βœ“ 2p2βˆ’5pβˆ’7 = 0 b| = 7 βœ“ (2pβˆ’7)(p+1) = 0 a=1 7 p = or p = βˆ’1 11(ii) Put aβˆ’1,b = 7 into both equations, 2 ∴ p = βˆ’1 (common sol) βœ“ x2+xy+y = 7 βˆ’(1) 12(ii) At p = βˆ’1, 2x+3y = 7 12x2βˆ’5y2 = 7 βˆ’(1) 3y = βˆ’2x+7 2 7 y = βˆ’ x+ βˆ’(2) 2xβˆ’5y = 7 3 3 βˆ’5y = βˆ’2x+7 sub (2) into (1): y = 2xβˆ’7 βˆ’(2) 5 5 x2+x(βˆ’2x+7) +(βˆ’2x+7) = 7 3 3 3 3 x2+(βˆ’2x2+7x) +(βˆ’2x+7) = 7 sub (2) into (1): 3 3 3 3 2 1x2+7x +(βˆ’2x+7) = 7 12x2βˆ’5(2xβˆ’7) = 7 3 3 3 3 5 5 1x2+5x+7 = 7 12x2βˆ’5(4 x2βˆ’28x+49) = 7 3 3 3 25 25 25 1x2+5xβˆ’14 = 0 3 3 3 12x2 βˆ’4x2+28xβˆ’49 = 7 x2+5xβˆ’14 = 0 5 5 5 (x+7)(xβˆ’2) = 0 56x2+28xβˆ’49 = 7 5 5 5 x = βˆ’7 or x = 2 (taken) 2 7 56x2+28xβˆ’84 = 0 y|x=βˆ’7 = βˆ’ (βˆ’7)+ 5 5 5 3 3 = 7 2x2+xβˆ’3 = 0 {x = βˆ’7,y = 7} βœ“ (2x+3)(xβˆ’1) = 0 3 x = βˆ’ or x = 1 (taken) 2 2 3 7 y| = (βˆ’ )βˆ’ 3 x=βˆ’ 5 2 5 2 = βˆ’2 3 β‡’ (βˆ’ ,βˆ’2) βœ“ 2 Β© Daniel & Samuel sleightofm ath.com 7 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.1 13(i) 14(ii) If k = 1, 𝑦 h (7π‘₯βˆ’20)2+(6𝑦+10)2 = 200 r Total surface area = 32Ο€ π‘₯ 2Ο€r2+2Ο€rh = 32Ο€ 𝑂 20 5 r2+hr = 16 [shown] βœ“ βˆ’(1) ( ,βˆ’ ) 7 3 7 1 13(ii) h = 4+r βˆ’(2) 𝑦 = βˆ’ π‘₯+ 2 6 sub (2) into (1): r2+(4+r)r = 16 Line 2r2+4r = 16 21x+6y = 1 2r2+4rβˆ’16 = 0 6y = βˆ’21x+1 7 1 r2+2rβˆ’8 = 0 y = βˆ’ x+ 2 6 (r+4)(rβˆ’2) = 0 r = βˆ’4 or r = 2 βœ“ Ellipse (rej ∡ r > 0) h| = 4+(2) (7xβˆ’20)2 +(6y+10)2 = 200 r=2 = 6 βœ“ 72(xβˆ’20)2+62(y+5)2 = 200 7 3 14(i) If k = 10, 72(xβˆ’20)2 62(y+5)2 7 + 3 = 1 Line 200 200 21x+6y = 10 (xβˆ’20)2 (y+5)2 7 + 3 = 1 6y = 10βˆ’21x 200 200 72 62 y = 10βˆ’621x βˆ’(1) (xβˆ’270)2 +(yβˆ’(βˆ’53))2 = 1 2 2 200 200 (√ ) (√ ) Ellipse 72 62 (7xβˆ’20)2+(6y+10)2 = 200 βˆ’(2) (xβˆ’20)2 (yβˆ’(βˆ’5))2 7 + 3 = 1 2 2 10√2 10√2 ( ) ( ) sub (1) into (2): 7 6 2 (7xβˆ’20)2+[6(10βˆ’621x)+10] = 200 (xβˆ’2.86)2+(yβˆ’(βˆ’1.67))2 = 1 (2.02)2 (2.36)2 (7xβˆ’20)2+[(10βˆ’21x)+10]2 = 200 20 5 β‡’ centre( ,βˆ’ ) (7xβˆ’20)2+(20βˆ’21x)2 = 200 7 3 200 (49x2βˆ’280x+400) β‡’ horizontal radius = √ = 200 72 +(400βˆ’840x+441x2) 200 β‡’ vertical radius = √ 490x2βˆ’1120x+800 = 200 62 Using the graphing calculator to plot curves, the 490x2βˆ’1120x+600 = 0 line and ellipse don’t intersect. 49x2βˆ’112x+60 = 0 Hence, there are no solutions βœ“ βˆ’(βˆ’112)±√(βˆ’112)2βˆ’4(49)(60) 112±√784 112Β±28 x = = = 2(49) 98 98 14(iii) Geometrically, a line and ellipse can only intersect x = 10 or x = 6 βœ“ twice at most. βœ“ 7 7 10 6 10βˆ’21( ) 10βˆ’21( ) y| = 7 y| = 7 10 6 x= 6 x= 6 7 7 10 4 = βˆ’ βœ“ = βˆ’ βœ“ 3 3 Β© Daniel & Samuel sleightofm ath.com 8 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.2 4(i) 2x2βˆ’xβˆ’4 = 0 Ex 1.2 i.e. a = 2,b = βˆ’1,c = βˆ’4 1(a) 3x2+9x = 1 Roots: Ξ± & Ξ² 3x2+9xβˆ’1 = 0 b (βˆ’1) 1 i.e. a = 3,b = 9,c = βˆ’1 Sum of roots = Ξ±+Ξ² = βˆ’ = βˆ’ = a (2) 2 Roots: Ξ± & Ξ² c (βˆ’4) Product of roots = Ξ±Ξ² = = = βˆ’2 a (2) b (9) Sum of roots = Ξ±+Ξ² = βˆ’ = βˆ’ = βˆ’3 βœ“ a (3) (Ξ±+Ξ²)2 = Ξ±2+2Ξ±Ξ²+Ξ²2 c (βˆ’1) 1 Product of roots = Ξ±Ξ² = = = βˆ’ βœ“ (Ξ±+Ξ²)2βˆ’2Ξ±Ξ² = Ξ±2+Ξ²2 a (3) 3 Ξ±2+Ξ²2 = (Ξ±+Ξ²)2 βˆ’2Ξ±Ξ² 1(b) 4x+2x2 = 3x2+2 1 2 = ( ) βˆ’2(βˆ’2) x2βˆ’4x+2 = 0 2 1 i.e. a = 1,b = βˆ’4,c = 2 = 4 βœ“ 4 Roots: Ξ± & Ξ² 4(ii) (Ξ±βˆ’Ξ²)2 = Ξ±2βˆ’2Ξ±Ξ²+Ξ²2 b (βˆ’4) = (Ξ±2+Ξ²2) βˆ’2Ξ±Ξ² Sum of roots = Ξ±+Ξ² = βˆ’ = βˆ’ = 4 βœ“ a (1) 1 = (4 ) βˆ’2(βˆ’2) Product of roots = Ξ±Ξ² = c = (2) = 2 βœ“ 4 a (1) = 33 4 2(i) x2+3x+1 = 0 Ξ±βˆ’Ξ² = ±√33 βœ“ 2 i.e. a = 1,b = 3,c = 1 Roots: Ξ± & Ξ² 5(i) x2βˆ’4x+c = 0 i.e. a = 1,b = βˆ’4,c = c Sum of roots = Ξ±+Ξ² = βˆ’b = βˆ’(3) = βˆ’3 Roots: Ξ± & (Ξ±+2) a (1) c (1) Product of roots = Ξ±Ξ² = = = 1 a (1) Sum of roots b = Ξ±+(Ξ±+2) = βˆ’ 2 2 2Ξ²+2Ξ± 2(Ξ±+Ξ²) 2(βˆ’3) a + = = = = βˆ’6 βœ“ (βˆ’4) Ξ± Ξ² Ξ±Ξ² Ξ±Ξ² (1) β‡’ 2Ξ±+2 = βˆ’ (1) 2Ξ±+2 = 4 2(ii) (2Ξ±βˆ’1)(2Ξ²βˆ’1) 2Ξ± = 2 = 4Ξ±Ξ² βˆ’2Ξ±βˆ’2Ξ² +1 = 4Ξ±Ξ² βˆ’2(Ξ±+Ξ²) +1 Ξ± = 1 βœ“ = 4(1) βˆ’2(βˆ’3) +1 Ξ±+2 = 3 βœ“ = 11 βœ“ 5(ii) Product of roots c 3 40x2βˆ’138x+119 = 0 = Ξ±(Ξ±+2) = a i.e. a = 40,b = βˆ’138,c = 119 β‡’ Ξ±(Ξ±+2) = c Roots: Ξ± & Ξ² are heights of two men 1(1+2) = c ∡ Ξ± = 1 c = 3 βœ“ b (βˆ’138) 69 Sum of roots = Ξ±+Ξ² = βˆ’ = βˆ’ = a (40) 20 6(a) Roots: Ξ± = 2 & Ξ² = 5 Sum of roots = Ξ±+Ξ² = (2)+(5) = 7 69 Average height = Ξ±+Ξ² = 20 = 69 βœ“ Product of roots = Ξ±Ξ² = (2)(5) = (10) 2 2 40 x2βˆ’(SOR)x+(POR) = 0 x2βˆ’7x+10 = 0 βœ“ Β© Daniel & Samuel sleightofm ath.com 9 A-math tuition πŸ“ž9133 9982 A math 360 sol (unofficial) Ex 1.2 6(b) Roots: Ξ± = βˆ’1 & Ξ² = 3 8(i) x2+px+q = 0 Sum of roots = Ξ±+Ξ² = (βˆ’1)+(3) = 2 i.e. a = 1,b = p,c = q Product of roots = Ξ±Ξ² = (βˆ’1)(3) = βˆ’3 Roots: Ξ± & 4Ξ± x2βˆ’(SOR)x+(POR) = 0 b Sum of roots = Ξ±+4Ξ± = βˆ’ x2βˆ’2xβˆ’3 = 0 βœ“ a = 5Ξ± = βˆ’p βœ“ βˆ’(1) 7(i) 1st equation c 2x2βˆ’4x+5 = 0 Product of roots = Ξ±(4Ξ±) = a i.e. a = 2,b = βˆ’4,c = 5 = 4Ξ±2 = q βœ“ βˆ’(2) Roots: Ξ± & Ξ² 8(ii) From (1): b (βˆ’4) 5Ξ± = βˆ’p Sum of roots = Ξ±+Ξ² = βˆ’ = βˆ’ = 2 a (2) Ξ± = βˆ’p βˆ’(3) c (5) 5 5 Product of roots = Ξ±Ξ² = = = a (2) 2 sub (3) into (2): 2nd equation 1 2 4(βˆ’ p) = q Roots: (Ξ±βˆ’1) & (Ξ²βˆ’1) 5 4p2 Sum of roots Product of roots = q 25 = (Ξ±βˆ’1)+(Ξ²βˆ’1) = (Ξ±βˆ’1)(Ξ²βˆ’1) 4p2 = 25q [shown] βœ“ = (Ξ±+Ξ²) βˆ’2 = Ξ±Ξ² βˆ’Ξ±βˆ’Ξ² +1 = (2) βˆ’2 = Ξ±Ξ² βˆ’(Ξ±+Ξ²) +1 9(i) 2x2βˆ’xβˆ’2 = 0 = 0 = (5) βˆ’(2) +1 i.e. a = 2,b = βˆ’1,c = βˆ’2 2 Roots: Ξ± & Ξ² 3 = 2 Sum of roots = Ξ±+Ξ² = βˆ’b = βˆ’(βˆ’1) = 1 x2βˆ’(SOR)x+(POR) = 0 a (2) 2 x2βˆ’0x+3 = 0 Product of roots = Ξ±Ξ² = c = (βˆ’2) = βˆ’1 2 a (2) 2x2+3 = 0 βœ“ Ξ±2+Ξ²2 7(ii) 3rd equation = (Ξ±+Ξ²)2 βˆ’2(Ξ±Ξ²) Recall Ξ±+Ξ² = 2, Ξ±Ξ² = 5 1 2 = ( ) βˆ’2(βˆ’1) 2 2 Roots: 2Ξ± & 2Ξ² 1 = 2 βœ“ 4 Sum of roots = 2Ξ±+2Ξ² = 2(Ξ±+Ξ²) = 2(2) = 4 9(ii) Ξ²+Ξ± = Ξ²2+Ξ±2 = (214) = βˆ’21 βœ“ Ξ± Ξ² Ξ±Ξ² (βˆ’1) 4 Product of roots 5 9(iii) Ξ±4+Ξ²4 = (Ξ±2+Ξ²2)2 βˆ’2Ξ±2Ξ²2 = (2Ξ±)(2Ξ²) = 4(Ξ±Ξ²) = 4( ) = 10 2 = (Ξ±2+Ξ²2)2 βˆ’2(Ξ±Ξ²)2 x2βˆ’(SOR)x+(POR) = 0 = (21)2 βˆ’2(βˆ’1)2 x2βˆ’4x+10 = 0 βœ“ 4 49 = βœ“ 16 Β© Daniel & Samuel sleightofm ath.com 10 A-math tuition πŸ“ž9133 9982

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.