ebook img

Adaptive Link Selection Strategies for Distributed Estimation in Wireless Sensor Networks PDF

0.22 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Adaptive Link Selection Strategies for Distributed Estimation in Wireless Sensor Networks

ADAPTIVELINK SELECTION STRATEGIES FORDISTRIBUTED ESTIMATION IN WIRELESS SENSOR NETWORKS SongcenXu, RodrigoC. deLamareandH. VincentPoor CommunicationsResearch Group,Department ofElectronics UniversityofYork, U.K. Princeton University Emails: [email protected],[email protected],[email protected] 4 1 0 2 ABSTRACT network in order to select a subset of links that result in an im- n proved estimation performance. The first approach consists of an In this work, we propose adaptive link selection strategies for a exhaustive searchbased link selection (ESLS) algorithm, whereas distributedestimationindiffusion-type wirelessnetworks. Wede- J the second technique is based on a sparsity-inspired link selection velop an exhaustive search-based link selection algorithm and a 5 (SILS) algorithm. For the ESLS algorithm, we consider all pos- sparsity-inspiredlinkselectionalgorithmthatcanexploitthetopol- 1 sible combinations for each node with its neighbors and choose ogyofnetworks withpoor-qualitylinks. Intheexhaustivesearch- thecombinationassociatedwiththesmallestEMSEvalue. Forthe basedalgorithm, wechoose theset ofneighbors that resultsinthe ] SILS algorithm, we introduce the RZA strategy into the adaptive T smallestexcessmeansquareerror(EMSE)foraspecificnode.Inthe linkselectionalgorithm. TheRZAstrategyisusuallyemployedin sparsity-inspired link selection algorithm, a convex regularization I applicationstodealwithsparsesystemsinsuchawaythatitshrinks . isintroduced todeviseasparsity-inspiredlinkselectionalgorithm. s thesmallvaluesintheweightvectortozero,whichresultsinabetter c The proposed algorithms have the ability to equip diffusion-type convergence rateand steady-stateperformance. Unlikeprior work [ wireless networks and to significantly improve their performance. withsparsity-awarealgorithms[3,6,7,8,9,10],theproposedSILS Simulationresultsillustratethattheproposedalgorithmshavelower 1 algorithm exploits the possible sparsity of the EMSE associated EMSE values, a better convergence rate and significantly improve v witheach of the linksin anopposite way. Weintroduce a convex thenetworkperformancewhencomparedwithexistingmethods. 5 penalty, i.e., an ℓ1–norm term to adjust the combined coefficients 8 Index Terms— Adaptive link selection, diffusion networks, for each node with its neighbors in order to select the neighbor 7 wirelesssensornetworks,distributedprocessing. nodesthatyieldthesmallestEMSEvalues.Foraspecifiednode,we 3 calculate the EMSE all its neighbor nodes including the specified . node itselfthrough theprevious estimation. Forthenode withthe 1 1. INTRODUCTION maximum EMSE,weimpose a penalty and give thesame amount 0 ofawardtothenodewiththeminimumEMSE.TheproposedSILS 4 Distributed strategies have become very popular for parameter es- algorithm performs thisprocess automatically. By using the SILS 1 timationin wireless networks and applications such as sensor net- : works and smart grids [1, 2, 3, 4]. In this context, for each spe- algorithm some nodes with bad performance will be shrunk and v some poor nodes will taken into account when their performance cific node a set of neighbor nodes collect their local information i improves,whichmeansthenetworktopologywillchangeautomat- X andtransmittheestimatesbacktoaspecificnode. Manyworksin ically as well. Simulation results for an application to distributed theliteraturehaveproposedstrategiesfordistributedprocessing:in- r a cremental[1],diffusion[2],sparsity-aware[3]andconsensus-based system identification illustrate that, the proposed ESLS and SILS algorithms have a better convergence rate and lower EMSE value strategies[4]. Withdiffusionstrategies[2]andaleast-meansquare whencomparedwiththeexistingdiffusionLMSstrategies[2]. (LMS)algorithm,theneighborsforeachnodearefixedandthecom- binedcoefficientsarepre-calculatedafterthenetworkisgenerated. Thispaperisorganizedasfollows. Section2describesthedis- Thisapproachmaynotprovideanoptimizedestimationperformance tributedprocessinginthenetworksandproblemstatement. Insec- foreachspecifiednodebecausetherearelinksthataremoreseverely tion3, the proposed link selectionalgorithms are introduced. The affectedbynoiseorfading.Moreover,whenthenumberofneighbor numerical simulation results are provide in section 4. Finally, we nodes is large, each node requires a large network bandwidth and concludethepaperinsection5. transmit power. In order to reduce this bandwidth requirement, a Notation: Weuseboldfaceuppercaseletterstodenotematrices single-linkdiffusionstrategyhasbeenreportedrecentlyin[5],where andboldfacelowercaseletterstodenotevectors. Weuse(·)T and each node selects itsbest neighbor node. A key problem withthe (·)−1 denote the transpose and inverse operators respectively, and strategiesreportedsofarintheliteratureisthattheydonotexploit (·)∗forconjugatetransposition. thetopologyofwirelessnetworksandtheknowledgeaboutthepoor linkstoimprovetheperformanceofestimationalgorithms. In order to optimize the performance of distributed estimation 2. DISTRIBUTEDPROCESSINGINWIRELESS techniques in wireless networks and minimize the excess mean- NETWORKSANDPROBLEMSTATEMENT square error (EMSE) associated with the estimates, we propose two adaptive link selection algorithms. The proposed techniques Weconsideradiffusion–typewirelessnetworkwithNnodeswhich exploittheknowledgeaboutthepoorlinksandthetopologyofthe have limitedprocessing capabilities. At every timeinstant i, each nodektakesascalarmeasurementd(i)accordingto: k 20 d(ki) =ωH0 xk(i)+nk(i), i=1,2,...,N, (1) 18 14 12 11 wherex(ki)istheM×1inputsignalvector,nk(i)isthenoisesample 16 10 ateachnodewithzeromeanandvarianceσ2 .Through(1),wecan v,k 14 4 seethat themeasurements forall nodes arerelatedtoanunknown 20 18 vectorω . Fig.1showsanexampleforadiffusion–typewireless 12 0 network with 20 nodes. The aim for the diffusion – type network istocomputeanestimateofω0 inadistributedfashion,whichcan 10 15 7 9 minimizethecostfunction: 8 19 8 J (ω)=E|d(i)−ωHx(i)|2, (2) 6 ω k k 13 3 4 6 whereEdenotestheexpectationoperator.Tosolvethisproblem,one 17 possiblebasic diffusion strategyisthe adapt–then–combine (ATC) 2 2 diffusionstrategy[2]: 00 2 4 166 8 101 12 14 16 518 20 ψ(i) =ω(i−1)+µ x(i)[d(i)−ω(i−1)∗x(i)]∗, k k k k k k k  ω(ki) = cklψl(i), (3) Fig.1.Networktopologywith20nodes l∈PNk  wherec isthecombinecoefficient, whichiscalculatedunderthe kl Metropolisrules: where{nk}isthetotalnumberofnodeslinkedtonodekincluding nodekitself.Thiscombinatorialstrategywillcoverallcombination ckl = max(n1k,nl), ifk6=l arelinked choicesforeachnodekwithitsneighbors.  ckl =0, forkandlnotlinked AfterthetentativesetΩs isdefined,weredefinethecostfunc-  ckk =1− ckl, fork=l tionas  l∈NPk/k (4) Jψ(ψ),E|d(ki)−x(ki)∗ψ|2, (7) andshouldsatisfy: where ψ, c ψ(i), (8) kl l ckl =1,l∈Nk∀k (5) lX∈Ωs Xl andtheerrorpatternisintroducedas: Forthiskindofstrategy,thechoiceoftheneighborsforeachnode e(i) ,d(i)−x(i)∗ c ψ(i). (9) isfixed,thissituationwillcauseaproblemwhensomeoftheneigh- Ωs k k kl l bornodeshaveapoorperformance, andthereisnochanceforthe lX∈Ωs nodetodiscardthebadperformanceneighborsinsteadofcontinue Foreachnodek,thestrategythatfindsthebestsetΩ shouldsolve s tousetheirinformation. Tooptimizethedistributedprocessingand thefollowingoptimization: improve the performance, we need to provide each node some re- finementsandtheabilitytoselectitslinks. Ω =argminJ (ψ) (10) s ψ Ωs c 3. PROPOSEDADAPTIVELINKSELECTION whichisequivalenttominimizingtheerrore(i).Afterallstepshave ALGORITHMS Ωs beencompleted,thediffusionstepin(3)canbemodifiedas: Inordertooptimizethedistributedprocessingandimprovetheper- ω(i) = c ψ(i). (11) formanceofthenetwork,weproposetheESLSandtheSILSalgo- k kl l Xc rithms.Thesetwoalgorithmicstrategiesgivethenodestheabilityto l∈Ωs choosetheirneighborsbasedontheirEMSEperformance. Atthispoint,themainstepsoftheESLSalgorithmhavebeencom- pleted. Theproposed ESLSalgorithmfindsthebest set Ω which s 3.1. Exhaustivesearch-basedlinkselection(ESLS) minimizes the cost function in (7) and then uses this set of nodes c TheESLSemploysanexhaustivesearchtoselectthelinksthatyield toobtainω(ki) through(11). TheESLSalgorithmissummarizedin the best performance in terms of EMSE. For our proposed ESLS Table1.WhentheESLSisimplementedinnetworkswithsmalland low-powersensors,thecostmaybecomeexpensive,asthealgorithm algorithm,weemploytheadaptationstrategygivenby in(6)requiresanexhaustivesearchandneedsmorecommunication ψ(ki) =ωk(i−1)+µkxk(i)[dk(i)−ωk(i−1)∗xk(i)]∗ resourcestoexamineallthepossiblesetsΩs. andredefinethediffusionstep. 3.2. Sparsity-inspiredlinkselection(SILS) First,weintroduceatentativesetΩ usingacombinatorialap- s proachdescribedby The ESLS algorithm outlined above mentioned problem needs to examineallpossiblesetstofindasolution,whichmightresultinan Ω ,Cj , j =1,2,...,nk, (6) unacceptablecomputationalcomplexityforlargenetworksoperating s nk betransformedintothelinkselectionmethodas: Table1.TheESLSAlgorithm FInoirtieaaliczhe:tiωm(ke−i1n)s=ta0nti=1,2,...,n ω(ki) =lX∈Nk[ckl−ρ∂∂fe1l(e(li))]ψ(li) (14) Foreachnodek=1,2,...,N ψ(i) =ω(i−1)+µ x(i)[d(i)−ω(i−1)∗x(i)]∗ where ρ is used to control the strength of the algorithm and it is k k k k k k k updatedbyusing end Foreachnodek=1,2,...,N ∂f (e(i)) sign(e(i)) findallpossiblesetsofΩ 1 l =ε l (15) e(i) =d(i)−x(i)∗ cs ψ(i) ∂el 1+ε|ξmin| Ωs k k kl l l∈PΩs In(15),theparameterξ standsfortheminimumvalueofe(i) in Ω =argmine(i) min l s Ωs Ωs eachgroupofnodesincludingeachnodek anditsneighbors. The ωc(i) = c ψ(i) functionsign(x)isdefinedas k kl l c l∈PΩs x/|x| x6=0 end sign(x)= (16) end (cid:26) 0 x=0 Tofurther simplifytheexpression in(14), weintroduce thevector andmatrixquantitiesrequiredtodescribetheadaptationprocess.We intime-varyingscenarios. Tosolvethecombinatorialproblemwith firstdefineavectorcthatcontainsthecombinationcoefficientsfor alowcomplexity,weproposetheSILSalgorithmwhichisassimple eachgroupofnodesincludingnodekanditsneighborsasdescribed asastandarddiffusionLMSalgorithmandissuitablefor adaptive by implementationsandscenarioswheretheparameterstobeestimated c,[c ] (17) (k,l) l∈Nk areslowlytime-varying. Then,weintroduceamatrixΨthatincludesalltheestimatedvectors whicharegeneratedaftertheadaptationstepin(3)foreachgroupas 2#-3,) 2#-3,) ! givenby !"#$%&’()*+#$,)) Ψ,[ψl(i)]l∈Nk (18) *-./$&’01) Anerrorvectorethatcontainsalltheerrorvaluescalculatedthrough (13)foreachgroupisexpressedby 4/5,%) 4/5,%) #6)!"#$%&’()*+#$,)*-./$&’01) e,[e(i)] (19) 2#-3,) 2#-3,) l l∈Nk To employ the sparsity –inspired approach, we have modified the !78!)) *-./$&’01) vectoreinthefollowingway.Themaximumvaluee(i)inewillbe l 4/5,%) 4/5,%) setto|e(li)|,whiletheminimumvaluee(li)willbesetto−|e(li)|.For 96)!78!)*-./$&’01) theremainingentries,theywillbesettozero. Finally,byinserting (15)-(19)into(14),thediffusionstepwillbechangedto Fig.2.SparsityAwareTechnology Nk ∂f ω(i) = [c −ρ 1(e )]Ψ k j ∂e j j Fig. 2showsthedifferencebetweentheexistingsparsity-aware Xj=1 j (20) methodsandtheproposedsparsity-inspiredstrategy. InFig. 2(a), wecanseethat,afterbeingprocessedbyasparsity-awarealgorithm, = Nk[c −ρε sign(ej) ]Ψ thenodeswithsmallerrorvalueswillbeshrunktozero.Incontrast, Xj=1 j 1+ε|ξmin| j thesparsity-inspiredalgorithmwillshrinkthenodeswithlargeerror valuestozeroasillustratedinFig.2. TheproposedSILSalgorithmperformslinkselectionbytheadjust- In the proposed SILS algorithm, we introduce the convex ment of the combination coefficients through c in (20). For the penalty term ℓ –norm into the diffusion step in (3) to perform neighbornodewiththelargestEMSEvalue,afterourmodifications 1 thelinkselection. Differentpenaltytermshavebeenconsideredfor fore,itse(i)valueinewillbeapositivenumberwhichwillleadto l thistask. Wehaveadoptedthereweightedzero–attracting strategy thetermρε sign(ej) in(20)beingpositivetoo.Thismeansthatthe [3]intothediffusionstepin(3)becausethisstrategyhasshownan 1+ε|ξmin| combiningcoefficientforthisnodewillbereducedandtheweight excellentperformanceandissimpletoimplement. for this node to build the ω(i) is reduced too. In contrast, for the First,weconsiderthefollowingregularizationfunction: k neighbornodewiththeminimumEMSE,asitse(i) valueinewill l f (e(i)))= log(1+ε|e(i)|) (12) be a negative number, the term ρε sign(ej) in (20) will be nega- 1 l l 1+ε|ξmin| lX∈Nk tive too. As a result, the weight for this node associated with the minimumEMSEtobuildtheω(i) isincreased. For theremaining wheretheerrorpatternel(i)isdefinedas: neighbor nodes, the e(i) value ink e is zero, which means the term l e(li) ,dk(i)−xk(i)∗ψl(i) (l∈Nk) (13) tρoεb1us+iigεlnd|ξ(methjien)|ωi(ni)(.2T0)heispzreorcoesasnfdorththereeciosmnboincahtainognecofoerffithcieeinrtwsiesigshtitlsl k andεistheshrinkagemagnitude.Then,thediffusionstepin(3)can satisfied(5).TheSILSalgorithmissummarizedinTable2. Table2.TheSILSAlgorithm 0 Initialize:ω(−1)=0 Diffusion ATC LMS without link selection k Foreachtimeinstanti=1,2,...,n −5 Diffusion ESLS link selection Foreachnodek=1,2,...,N Diffusion SILS link selection ψ(i) =ω(i−1)+µ x(i)[d(i)−`ω(i−1)∗x(i)]∗ −10 EMSE Bound k k k k k k k end −15 Foreachnodek=1,2,...,N B) e(li) =d(ki)−xk(i)∗ψl(i) (l∈Nk) SE (d−20 c=[c ] M (k,l) l∈Nk E Ψ=[ψ(i)] −25 l l∈Nk e=[e(i)] l l∈Nk −30 Findthemaximumandminimumtermsine Modifiedease=[0···0,|el(i)|,0···0,−|el(i)|,0···0] −35 max min ξmax=min(el(i)) |{z} | {z } −400 80 160 240 320itera40ti0ons 480 560 640 720 800 ω(i) = Nk[c −ρε sign(ej) ]Ψ k j 1+ε|ξmin| j jP=1 Fig.3.NetworkEMSEcurvesinastaticscenario end end 5 For the ESLS and SILS algorithms, we redesign the diffusion Diffusion ATC LMS without link selection stepandemploythesameadaptationprocedure,whichmeansthese Diffusion ESLS link selection 0 Diffusion SILS link selection twoalgorithmshavetheabilitytoequipanydiffusion–typewireless EMSE Bound networksbesidestheLMSstrategy.ThisincludesthediffusionRLS −5 strategy[11]andthediffusionconjugategradientstrategy[12]. −10 B) 4. SIMULATIONRESULTS E (d−15 S M E In this section, we compare our proposed diffusion link selection −20 algorithms ESLS and SILS with the traditional diffusion ATC al- gorithm[2]basedontheperformanceofEMSE.Withthenetwork −25 topologystructureinFig. 1,weintroduceN=20nodesinthissys- tem. The length for the unknown parameter ω is M=10 and it −30 0 is generated randomly. The input signal is generated as u(i) = k −35 [u(ki) uk(i−1) ... u(ki−M+1)]anduk(i) = xk(i)+ρkuk(i−1),where 0 80 160 240 320 itera40ti0ons 480 560 640 720 800 x(i)isawhitenoiseprocesstoensurethevarianceofu(i)σ2 =1. k k u,k ThenoisesamplesaremodeledascomplexGaussiannoisewithvari- Fig.4.NetworkEMSEcurvesinatime–varyingscenario anceofσ2 = 0.001. Thestepsizeforallthesethreealgorithmsis k µ= 0.045. Forthestaticscenario,thesparsityparametersofSILS algorithmaresettoρ = 4∗10−3 andε = 10. Theresultsareav- eragedover100independentruns.FromFig.3,wecanseethat,the ESLShasthebestperformanceonboththeEMSEandconvergence 5. CONCLUSION rate, it has around a 5 dB gain over the traditional diffusion ATC algorithm. SILSisabitworsethantheESLS,butstillsignificantly Inthispaper, twoadaptive link selectionstrategieshave been pro- betterthanthestandarddiffusionATCalgorithmbyabout4dB.For posedfordistributedestimationindiffusion–typewirelessnetworks. thecomplexityandprocessingtime, SILSisassimpleasthestan- TheESLSalgorithmusesanexhaustive searchtoperformthelink darddiffusionATCalgorithm,whileESLSismorecomplex.Forthe selection, and the SILSemploys a sparsity-inspired approach with time–varyingscenario,thesparsityparametersofSILSalgorithm aresettoρ = 6∗10−3 andε = 10. Theunknownvectorω isis theℓ1 –norm penalization. TheESLSalgorithmchooses thebest 0 set of nodes, while the SILS algorithm shrinks the node with the definedbythefirst–orderMarkovvectorprocess: highesterrorvaluesandawardsthenodewiththesmallesterrorsin eachgroup. Numericalresultshaveshownthatthetwoproposedal- ω0(i+1) =ω0(i)+z(i) (21) gorithmsachieveabetterconvergencerateandlowerEMSEvalues thanthealgorithmsin[2]. Theseresultsholdfor other algorithms wherez(i) isanindependent zero–meangaussianvectorprocess. includingRLSandCGtechniques. TheESLSandSILSalgorithms Fig. 4 shows that, for the time – varying scenario, the ESLS still can beused inany kind of diffusion – typewirelessnetworks and performsbest,whiletheSILShasthesecondbestperformance. appliedtoproblemsofstatisticalinferenceinsmartgrids. 6. REFERENCES [1] C.G.LopesandA.H.Sayed, “Incrementaladaptivestrategies overdistributednetworks,” IEEETrans.SignalProcess.,vol. 48,no.8,pp.223–229,Aug2007. [2] C.G.LopesandA.H.Sayed, “Diffusionleast-meansquares overadaptivenetworks: Formulationandperformanceanaly- sis,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3122– 3136,July2008. [3] Y.GuY.ChenandA.O.Hero, “SparseLMSforsystemiden- tification,” Proc.ICASSP,pp.3125–3128,Taipei,May2009. [4] L.Xie,D.-H.Choi,S.Kar,andH.V.Poor, “FullyDistributed StateEstimationfor Wide-Area Monitoring Systems,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1154–1169, September2012. [5] X. Zhao and A. H. Sayed, “Single-link diffusion strategies overadaptivenetworks,” Proc.IEEEICASSP,pp.3749–3752, Kyoto,Japan,March2012. [6] R.C.deLamareand R.Sampaio-Neto, “Adaptive Reduced- Rank Processing Based on Joint and Iterative Interpolation, DecimationandFiltering,” IEEETrans.SignalProcess.,vol. 57,no.7,pp.2503–2514,July2009. [7] R.C.deLamareandP.S.R.Diniz,“Set-MembershipAdaptive AlgorithmsbasedonTime-VaryingErrorBoundsforCDMA InterferenceSuppression,”IEEETrans.VehicularTechnology., vol.58,no.2,pp.644–654,February2009. [8] R.Meng,R.C.deLamare,andV.H.Nascimento, “Sparsity- Aware Affine Projection Adaptive Algorithms for System Identification,” Proc. Sensor Signal Processing for Defence Conference,London,UK,2011. [9] L.GuoandY.F.Huang,“Frequency-DomainSet-Membership FilteringandItsApplications,” IEEETrans.SignalProcess., vol.55,no.4,pp.1326–1338,April2007. [10] Z.Yang,R.C.deLamare,andXiangLi, “L1-regularizedstap algorithms with a generalized sidelobe canceler architecture forairborneradar,” SignalProcessing,IEEETransactionson, vol.60,no.2,pp.674–686,2012. [11] C.G.LopesF.CattivelliandA.H.Sayed, “AdiffusionRLS scheme for distributed estimation over adaptive networks,” Proc.IEEEWorkshoponSignalProcessingAdvancesinWire- less Communications (SPAWC), pp. 1–5, Helsinki, Finland, June2007. [12] S.XuandR.C.deLamare, “DistributedConjugateGradient StrategiesforDistributedEstimationOverSensorNetworks,” Proc. Sensor Signal Processing for Defence 2012, London, UK,2012. −5 Diffusion ATC LMS without link selection Diffusion ESLS link selection Diffusion SILS link selection −10 −15 ) −20 B d ( E S M E −25 −30 −35 −40 0 80 160 240 320 400 480 560 640 720 800 iterations

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.