ebook img

ADAM: a general method for using various data types in asteroid reconstruction PDF

2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ADAM: a general method for using various data types in asteroid reconstruction

Astronomy&Astrophysicsmanuscriptno.ADAM (cid:13)cESO2015 January27,2015 ADAM: a general method for using various data types in asteroid reconstruction MattiViikinkoski1,MikkoKaasalainen1,andJosefDˇurech2 1 DepartmentofMathematics,TampereUniversityofTechnology,POBox553,33101Tampere,Finland 2 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovicˇkách 2, 18000 Prague, CzechRepublic Received;accepted 5 ABSTRACT 1 0 WeintroduceADAM,theAll-DataAsteroidModellingalgorithm.ADAMissimpleanduniversalsinceithandlesalldisk-resolved 2 datatypes(adaptiveopticsorotherimages,interferometry,andrange-Dopplerradardata)inauniformmannerviathe2DFourier transform,enablingfastconvergenceinmodeloptimization.Theresolveddatacanbecombinedwithdisk-integrateddata(photome- n try).Inthereconstructionprocess,thedifferencebetweeneachdatatypeisonlyafewcodelinesdefiningtheparticulargeneralized a projectionfrom3Dontoa2Dimageplane.Occultationtimingscanbeincludedassparsesilhouettes,andthermalinfrareddataare J efficientlyhandledwithanapproximatealgorithmthatissufficientinpracticeduetothedominanceofthehigh-contrast(boundary) 3 pixelsoverthelow-contrast(interior)ones.ThisisofparticularimportancetotherawALMAdatathatcanbedirectlyhandledby 2 ADAM without having to construct the standard image. We study the reliability of the inversion by using the independent shape supportsoffunctionseriesandcontrol-pointsurfaces.Whenotherdataarelacking,onecancarryoutfastnonconvexlightcurve-only ] inversion,butanyshapemodelsresultingfromitshouldonlybetakenasillustrativeglobal-scaleones. P E Keywords. Methods:analytical,numerical–Minorplanets,asteroids:general,individual:(41)Daphne,2000ET 70 . h p -1. Introduction andoccultationtimings(“sparsesilhouettes”),weneedageneral o procedureforusinganydatasourcesinasteroidmodelling.We rGroundbasedandotherremote-sensingdataonasteroidsareob- t callthisADAM:All-DataAsteroidModelling.Conciseaccounts stained with a variety of instruments that essentially sample re- ofthevariousdatatypesandtheirmodellingaspectsaregivenin [agions on the surface of the target in various ways. These share Kaasalainen&Lamberg(2006),Kaasalainen&Dˇurech(2013), somecommonmathematicalcharacteristicsofgeneralizedpro- and Dˇurech et al. (201). This paper is intended as a technical 1jections (Kaasalainen & Lamberg 2006; Kaasalainen 2011; Vi- companiontothosereviews. vikinkoski & Kaasalainen 2014). The most abundant source of 8dataforasteroidshapeandspinreconstructionisdisk-integrated WepresentheretheADAMalgorithminahigh-levelformat 5photometry, because even datasets sparse in time are often suf- thatincludesallthenecessarymethodsandformulae,eitherwrit- 9ficient for modelling (Kaasalainen 2004; Dˇurech et al. 2006). 5 tenhereorgivenbyreferencestotheliterature.Wediscussand Lightcurve-inversion procedures (Kaasalainen et al. 2001) are 0 collect here the essential techniques and aspects of a complete available at, e.g., the Database of Asteroid Models from Inver- . inversion procedure capable of handling all the major asteroid 1sion Techniques (DAMIT) site1. Due to the inherently limited data sources and formats. The key point is that complementary 0informationcontentofthedisk-integrateddata,thecorrespond- datasourcescanfacilitateagoodreconstructionevenwhennone 5 1ingmodelsareusuallymostreliablydescribedinconvexspace ofthemissufficientalone. (Dˇurech & Kaasalainen (2003), and further discussed below). : vHowever,evenpartiallydisk-resolveddataofferarealisticpos- The paper is organized as follows. In Sect. 2 we describe Xisibility of more detailed modelling. Previously described ap- the various shape supports we use in the reconstruction; some proachesforsuchreconstructionaretheSHAPEsoftware(Ostro withtheemphasisonglobalfeatures,someconcentratingonlo- r aetal.2002)forradarandlightcurvedata,andtheKOALApro- caldetails.Thisisintimatelyconnectedwiththereliabilityesti- cedure(Kaasalainen&Viikinkoski2012;Carryetal.2012)for mateoftheresult,sinceindependentshaperepresentationshelp opticalimages,occultationtimings,andlightcurves. torevealwhichfeaturesarethemostprobableones.Sect.3in- troduces the Fourier transform method necessary for a simple anduniversalhandlingofdatasourcesofdisk-resolvedtype.In 1.1. Thewholeismorethanthesumofitsparts Sect.4,wepresentexamplesofsuchtypes(interferometry,radar, Thebestwaytoreconstructamodelofanasteroidistouseall and optical images). The interferometric data from ALMA are available data. To combine disk-resolved data (adaptive optics of particular interest here. We also discuss the special case of or other images, interferometry, and range-Doppler radar data) one-dimensionalprojections(continuous-waveradarandcertain with disk-integrated data (photometric or infrared lightcurves) typesofinterferometry).InSect.5wesumupeverythinginthe form of the ADAM algorithm, and conclude in Sect. 6. Some 1 http://astro.troja.mff.cuni.cz/projects/asteroids3D basicADAMfunctionsarelistedinanAppendix. Articlenumber,page1of11 A&Aproofs:manuscriptno.ADAM 1.2. ADAMsoftwarepackage ing surfaces represented by non-tangled meshes. Thus we have found it useful to consider two well-regulated but conceptually Using the methods and algorithm described here and in differentshapesupportsinpractice:octantoidsbasedonspheri- Kaasalainenetal.(2001),Kaasalainen(2011),andKaasalainen calharmonics,andsubdivisionsurfaces. &Viikinkoski(2012),writinganADAMprogramfromscratch is quite straightforward (for example, convex lightcurve inver- sion is inherently more complex). We have uploaded free-to- 2.1.1. Functionseries use ADAM code files and functions written in Matlab and C An octantoid is a surface given by p ∈ R3 that can be to a toolbox at the DAMIT site. These can be used for writ- parametrizedintheform ingcustomizedinversionsoftware,andforbrowsingandunder- standing the computational methods. The latter, too numerous tpoarbtiealddisecruivsasetidvehecrheaiinnsdfeotraigl,raindcielundt-ebatseecdhnoiqputiemsizsautcihona,srathye- p(θ,ϕ)= yx((θθ,,ϕϕ))== ea(θ,ϕ)e+ab((θθ,,ϕϕ))ssiinnθθcsoinsϕϕ,, (1) tracing procedures, projections and transforms, scattering and  z(θ,ϕ)= ea(θ,ϕ)+c(θ,ϕ)cosθ, luminositymodels,GPUacceleration,etc.(Notethatwedonot offeranyusersupport:thefilesarepresentedasis.) where a, b and c are conveniently expressed as linear com- binations of the (real) spherical harmonic functions Ym(θ,ϕ), ADAM is a considerably more general package than the l with coefficients a , b and c , respectively. Note that (θ,ϕ), KOALA procedure (Kaasalainen & Viikinkoski 2012; Carry lm lm lm 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, are coordinates on the unit sphere et al. 2012) that is based on extractable image contours. The S2 parametrizing the surface but not describing any physical KOALAcontour-fittingprincipleisnecessaryforincludingoc- directions such as polar coordinates. As usual, the Laplace se- cultationdata,soafullADAMprocedureinheritsthisfunction ries for a,b,c are useful for keeping the number of unknowns; fromKOALA.Forfittinganypixelimages,werecommendthe i.e., the coefficients of Ym, small and the surface smooth. If ADAMFourier-transformfunctionsratherthanKOALA. l b = c = 0, this representation is the usual starlike one with We take asteroid reconstruction to mean here that the fol- the radius exp(a), but we have found that even if the target is lowingoutputparametersarederivedforminputdata:1)shape starlike, the octantoid form allows the capture of detail better, (surface) definition, 2) rotational state (period and spin axis di- and b and c can be represented with considerably fewer terms rection;possiblyalsotermsforYORPacceleration,precession, than the main function a. The number of shape parameters is or a binary orbit), 3) scattering or other luminosity parameters (oftenfixedapriori),and4)imageoffset(alignment)andpossi- thusbetweenthe(lmax+1)2ofthestarlikecaseand3(lmax+1)2, whenl isthelargestdegreeofthefunctionseries.Thedraw- bleotherauxiliaryornormalizationterms.Withoutlossofgen- max back of this representation is its globality: one might want less erality, we do not discuss each item separately, but mostly take smoothnessregularizationinsomeregionsthaninothers.When the shape parameters to represent all the free ones since the morelocalcontrolisdesired(e.g.,afeatureclearlyvisibleinfly- optimization principle is technically the same for all parame- byimagesorinradar),therepresentation(1)maybeexpanded ter types. The speed, convergence, and reliability of gradient- withsphericalsplinesorsphericalwaveletstoprovidelocalde- basedoptimizationmethodsareheresuperiortoglobalmethods tailwithoutaffectingtheglobalshape.Dependingonthedesired (suchasgeneticalgorithmsorMonteCarlo;seethediscussionin level of resolution and the non-starlike irregularity of the sur- Kaasalainenetal.2001).Weemphasizethatthespinparameters, face, thenumber offree functionseries coefficientsis typically especiallytheperiod,usuallyhavenumerouslocalminima,soa between50and300fromlow-tomid-resolution.Functionseries denseenoughcombofinitialvaluesoftheseisaprerequisitefor areseldomusefulforhighresolution,whereonemayultimately agoodfinalreconstruction. want to adjust each vertex separately by defining individual a, i b,andc. i i 2. Shape Giventhediverseshapesofasteroidsandthecontinuingprogress 2.1.2. Subdivisioncontrolpoints ininstrumenttechnology,effectivemethodsforshaperepresen- Subdivisionsurfacesofferlocalcontrolmorethanglobalrepre- tationarerequiredforageneralreconstructionschemefromob- sentations like function series. Beginning with an initial set of servations. In inverse problems it is typically not clear a priori verticesandcorrespondingtriangles,calledacontrolmesh,the howwellagivenshapesupportwillperform.Inthissectionwe surface is iteratively refined by adding new vertices and com- present shape supports and corresponding regularization func- putingnewpositionsforoldvertices.Thevertexcoordinatesof tionswellsuitedforasteroid-likeshapes. the control mesh form the parameter set defining the surface. Eachsubdivisionstepsmoothesoutthesurfaceinahigherlevel 2.1. Shapesupports ofresolution.Well-behavingsubdivisionschemesconvergetoa smoothlimitsurface. An important part of shape modelling is the choice of shape In this paper we use the Loop subdivision scheme (Loop representation. Assuming a typical asteroid surface is homeo- 1987). Considering a vertex p with immediate neighbours morphic to the unit sphere, we can consider each coordinate p ,...,p , the subdivision method first creates new vertices 0 n−1 as a function on the sphere, and choosing a suitable basis for bysplittingeachedge: functions, expand coordinate functions using this basis. This is straightforwardtogeneralizetomultiplebodiessuchasbinaries. q = 3p+3pi+3pi−1+pi+1, i=0,...,n−1, (2) i Typicalsuchbasesaresphericalharmonics,sphericalwavelets, 8 andsphericalsplines.Ourexperimentssuggestthatparametriza- where the indices should be interpreted as modulo n. After the tionswhichexpandeachcoordinatefunctionseparatelytendto vertexcreationstep,thepositionofthevertex pisrefined: produce suboptimal results since they ignore the geometric de- (cid:88) pendenciesandconstraintsbetweencoordinateswhenconsider- p(cid:48) =(1−nβ)p+β p. (3) i Articlenumber,page2of11 M.Viikinkoskietal.:Disk-resolveddatainasteroidmodelling Themultiplierβisusuallychosentobe 1(cid:34)5 (3+2cos(2π/n))2(cid:35) β= − , (4) n 8 64 butotherchoicesarealsopossible.Thelimitsurfaceiscontinu- ous;C2 at the ordinary vertices (i.e. vertices that have 6 neigh- bours)andC1atextraordinaryvertices.Thenumberoffreecon- Fig. 1: Original control mesh (left) with 18 vertices (54 co- trolpointsformodelrenderingissimilartoorsomewhatlower ordinates) as the shape parameter set and 32 facets, after two thanthenumberoffunctionseriescoefficients(foracomparable √ 3-subdivision steps (middle), and after four subdivision steps levelofresolution). (right). Themaincomputationalaspectwithsubdivisionmethodsis thatthenumberoffacetsincreasesexponentiallywiththenum- ber of divisions. After n subdivision steps, each facet that has While not strictly necessary, it is convenient to assume that been divided has produced 4n subfacets. An alternative scheme √ the triangular mesh representing the shape forms a manifold. to Loop subdivision is the 3-subdivision (Kobbelt 2000). In- √ This assumption makes the checking of shadowing and illumi- steadofsplittingtheedges, 3-schemesubdividesfacetsbyin- nationbothconceptuallyandcomputationallysimpler.Thusitis serting a new vertex to the facet centroid and connecting i√t to imperativetoavoidself-intersections,astheyintroduceerrorsto theverticesofthefacet(Fig.1).Themainattractionofthe 3- the fitting process. One approach is to explicitly check for in- schemecomparedtotheLoopsubdivisionistheslowerincrease tersectingfacetsandretriangulateifrequired.However,triangu- (3n)offacets,whileperformingsimilarlyinthelimit. lationandintersectiontestsarecostly,andusuallyoptimization Inpractice,itisusuallyagoodideatochoosetheinitialcon- steps leading to self-intersections are suboptimal. A better ap- trolmeshtobeanellipsoidorascaledconvexsurfaceobtained proachistopreventself-intersectionsinthefirstplace. fromlightcurveinversion,withasuitablenumberofverticesfor Regularization based on dihedral angles penalizes large an- the mesh. The number of subdivision steps should be chosen gles between adjacent facet normals; i.e., the regularization carefully: while each subdivision increases resolution and sta- prefersplanarregions.Wethuswanttominimize bility by spreading the influence of each parameter to a larger (cid:88) number facets, the computational burden grows exponentially. γ = w (1−ν ·ν ), (6) 1 ij i j Insteadofsubdividingallthefacets,betterperformancemaybe i,j∈T obtainedwithadaptivesubdivision,whereonlyfacetsbenefiting from increased resolution are subdivided. However, how to do whereT arethefacetsofthemesh,andνkistheunitnormalvec- thisautomaticallyduringoptimizationisnotobvious.Aheuristic torcorrespondingtothefacetk.Thesumisoverallthosefacets inclusionofsurfaceregionstoberefinedbasedonarankingof j that are adjacent to the facet i, and the weights wij are usu- theimprovementofthefitisonepossibility(cf.theχ2-sensitivity allychosentobeunity.Asaspecialcase,wemaysuppressonly map of Kaasalainen & Viikinkoski 2012); visual inspection of concave features, obtaining convex regularization (Kaasalainen themodelfitandagraphicaluserinterfacecanguideinthis. &Viikinkoski2012): 1 (cid:88) 2.2. Regularizationfunctions γ2 = (cid:80) A Aj(1−νi·νj), (7) j j i,j Ininverseproblems,findingafeasibleregularizationmethodis whereA istheareaofthefacetiandthesumisoverthosefacets typicallythemostdelicatepartofproblemsolving.Ideally,both i jthatareadjacenttothefacetiandtiltedaboveitsplane. the shape representation and regularization method should be To prevent degenerate facets and maintain a homogeneous chosentocomplementeachother.Theshapesupportshouldbe mesh,itisadvantageoustoinhibitlargevariationsinfacetareas: general enough to represent probable shapes, and the regular- izationshouldpreventunrealisticordegenerateshapeswhile,at (cid:88) thesametime,revealthefeaturespresentinthedata.Foroctan- γ = (A −A¯)2, (8) 3 i toids, the choice is remarkably easy. Assuming the basic shape i isgeometricallystarlike,itisintuitivelyobvioustopenalizethe deviationfromstarlikeness.Tothiseffect,wedefine whereA¯isthemeanfacetareaofthepolyhedron. (cid:88) In practice, the regularization functions η and γ are suffi- η= l(b2 +c2 ). (5) 2 lm lm cient for octantoid surfaces, while γ2 and γ3 are useful for the l,m subdivision surfaces. Unrealistically sharp angles can be pre- Every starlike surface has a representation for which η = 0, so ventedwithγ1,buttoolargeaweightwillinhibitconvergence. ηisanaturalquantitytobeincludedinthefinalχ2-functionto In addition to geometric considerations, one can use regu- beminimized(Sect.5).Theχ2-sumcontainsboththegoodness- larizationbasedonphysicalconstraints,suchastherequirement of-fitmeasureandtheregularizingfunctionsthatrepresentprior for the rotation axis to be close to the largest principal axis of assumptionsandexpectationsofthesolution. theinertiatensor(Kaasalainen2011;Kaasalainen&Viikinkoski Subdivision surfaces have somewhat different smoothness 2012). properties in this regard. It is well known that the Loop sub- divisionconvergestoasmoothsurface,soeachsubdivisionstep 2.3. Reliabilityestimates will produce a smoother result. However, it is computationally expensivetotakealargenumberofsubdivisionsteps.Therefore Theoctantoidrepresentationorthesubdivisionmeshtendtopro- itisadvantageoustocombineafew,usuallytwoorthree,subdi- duceaestheticallypleasing,“asteroid-like”surfaces,butitisnot visionstepswithmesh-basedregularizationmethods. initiallyobviouswhichsurfacefeaturesofthemodelareactually Articlenumber,page3of11 A&Aproofs:manuscriptno.ADAM Fig.2:Modelofasteroid(41)Daphnefromadaptiveopticsim- Fig. 3: Asteroid (6489) Golevka reconstructed from disk- ages,reconstructedasasubdivisionsurface(left)andanoctan- integratedphotometry.Fromlefttoright:Convex,octantoidand toid(right). subdivisionsurface. 2.4. Inversionwithphotometryonly present in the data, and which are the side effects of the shape support and the regularization used. Conventionally, Markov Since ADAM utilizes photometric data in addition to disk- chainMonteCarlo(MCMC)methodsareusedtoobtainareli- resolved data, we note that ADAM can be used to reconstruct abilityestimateforthemodelparameters.However,inourcase, amodelusingphotometricdataonly(simplybyusingonlythe modellingandsystematicerrorsusuallydominate(Kaasalainen photometricfitfunctionfromthetoolbox).Thisiseasyandfast &Dˇurech2006),renderingtheMCMCapproachinefficientand to do (and the shape rendering is even faster than the standard inaccuratebecausetheerrordistributionisnotknown(itiscer- convexinversionoflightcurves),buttheresultisinevitablyun- tainlynotrandomGaussianasinstandardMCMC). reliable:itiswellknownthatevensizablenonconvexshapefea- turesrequirehighsolarphaseanglestoshowindisk-integrated Moreover, the posterior distribution of shape parameters data (Kaasalainen et al. 2001; Dˇurech & Kaasalainen 2003; from MCMC will not really tell anything about the reliability Kaasalainen&Dˇurech2006).Thiscanbeprobedwiththeshape ofthemodelwithrespecttodata,butonlyaboutthedistribution reliabilityapproachabove. oftheestimatewithintheadaptedshapesupport.Wehavefound Asanexample,weshowreconstructedshapesoftheasteroid thatthisresultsinanoveroptimisticconceptionofthereliability GolevkainFig.3,basedonthedatainKaasalainenetal.(2001). of the result, simply because the acceptable shape results can- Boththesubdivisionmethodandtheoctantoid-basedmodeldis- notbeprobedwidelyenoughusingoneshapesupportonly–the playadditionaldetailnotseenintheconvexmodel.However,the Monte Carlo procedure focuses on too small regions of shape detailsarenotsupportedbythedata:theconvexmodelgivesat variationforbothcomputationalandgeometricreasons.Inaddi- leastasgoodafitasthenonconvexones,asisalmostalwaysthe tion, the computation of the model fit is time consuming if the casewithlightcurves(sofartheonlycaseofabetternonconvex datasetandparameterspacearelarge,makingMCMCestima- model fit to photometry is that of the asteroid Eger in Dˇurech tioncomputationallyexpensive. etal.2012).Indeed,withGolevkaandothergroundtruthcases To circumvent these obstacles, we have found the follow- (maps from space probe missions), even the lightcurve fit with ingapproachfastandrobustinpractice.Anyrealfeatureofthe thecorrectshapeandthescatteringmodelassumedininversion modelbasedonthedatashouldalsobepresentifanother,inde- isnotbetterthanthatwiththeconvexmodel(Kaasalainenetal. pendentmodeltypesuchasshapesupportisused.Whenmodel 2001;Kaasalainen&Dˇurech2006).Thisunderlinesthefactthat, errors dominate, it is thus better to sample the “model space” due to systematic errors, any best-χ2 solution with photometry within some χ2 than the χ2-space with some fixed model. As onlyislikelytomissthecorrectdetails. anexample,shapemodelsoftheasteroidDaphnefromadaptive While the convex model yields the best global agreement opticsimagesandphotometry(Viikinkoski&Kaasalainen2014) with the radar-based Golevka model (see the comparison in usingboththeoctantoidrepresentationandsubdivisionsurfaces Figs. 3 and 4 in Kaasalainen et al. 2002), the nonconvex ones areshowninFig.2.Themodelsarequitesimilarandfitthedata portray much of the general sharpness and ruggedness of the equallywell,andtheirdifferencegivesanideaofthereallevel bodyeventhoughtheirdetailsarenotcorrect.Theconvexshape ofresolution.MCMCprobingwitheithershapesupportleadsto presents something of a softened error envelope within which unrealisticallysmalldifferences(insignificantcomparedtothose numerous local shape variations are possible (as if the target in Fig. 2). Even the shape-support test is likely to produce too were seen unfocused), while the nonconvex representations are optimistic reliability limits; the model error can be further en- samplingsofthosevariations.Theirdetailscoincideneitherwith largedby,e.g.,introducingrandomfluctuationsinthescattering eachothernorwiththoseintheradar-basedmodel,buttheyare properties over the surface. This principle could be developed usefulasillustrationsandforprobingthepotentialshapeoptions into a meta-level Monte Carlo procedure that probes the space (cf.thenonconvexexamplesinKaasalainenetal.2004). ofpossiblemodeltypesusinglatentparameters. We conclude that shape sampling based on a fixed model 3. Fouriertransformandinformationcontent type, no matter how diligently done with Monte Carlo or other methods, leads to overoptimistic resolution with artificial de- As discussed in Viikinkoski & Kaasalainen (2014), the Fourier tails.Atypicalexampleofthisistheradarmodeloftheasteroid transform (FT) facilitates a natural interpretation for the pixel Itokawa that portrayed imaginary detail at the resolution level size as the maximum frequency present in the data, and makes expectedfromthedatawhilenotcapturingeventhelarge-scale it easy to incorporate the impulse response function of the features.Therewasnothingwrongwiththemodelfittothedata imaging system. It also makes the optimization procedure fast assuch:theinverseproblemwassimplynonunique(orveryun- andstraightforward,withoutthecumbersomeaspectsrelatedto stable)duetotherestrictedobservinggeometriesandinstrumen- pixellated image fields and binned model image distributions. talprojection(Sect.4.2),buttheconstrainedshapesupportofthe TheprincipleoftheADAMapproachistocompare,insteadof programdidnotrevealthis(Ostroetal.2005;Nolanetal.2014). theimagesthemselves,asetofFTsamples(typicallysomethou- Articlenumber,page4of11 M.Viikinkoskietal.:Disk-resolveddatainasteroidmodelling sandsdependingonthelevelofresolution)fromthemodelim- agewiththoseofthedataimage,andtoiterateuntilthebestfit isfound.ThisisdescribedinSect.5. Letting T be the set of facets forming a model polyhedron andPaprojectionoperator,thetwo-dimensionalFouriertrans- formofaprojectedpolyhedroninthe(ξ,η)-planeis (cid:34) (cid:88) F(u,v)= B I(ξ,η)e−2πı(uξ+vη)dξdη, (9) i i Ti∈T PTi where B istheluminosityvalueofthefaceti,andthefunction i I(ξ,η)isunityifthepointprojectedon(ξ,η)isvisibleandzero otherwise. As shown in Viikinkoski & Kaasalainen (2014), we Fig.4:TheantennalocationsofALMA(left)andcorresponding obtainbyGreen’stheorem(dividingafacetintosubfacetsifnec- uv-plane visibilities (right). Images generated with the CASA essarysothatwemayassumeIisconstantwithineachsubfacet) softwarepackage. (cid:88) (cid:88) F(u,v)= B I (u,v), (10) i ij the instrumental projection plane and the adopted point-spread i j function).Inthissection,wepresentdiverseexamplesofshape where reconstruction with ADAM using both simulated and observed 1 (b−d)u−(a−c)v data. I (u,v)= ij 4π2(u2+v2)(a−c)u+(b−d)v (cid:104) (cid:105) × e−2πı(au+bv)−e−2πı(cu+dv) (11) 4.1. InterferometryandALMA for the j-th boundary line segment (oriented counterclockwise) Theinterferometricimagingmethoddiffersradicallyfromatyp- ofthefaceti,withtheendpoints(a,b)and(c,d). ical telescope; instead of observing the sky brightness directly, The summation over the interior edges of a projected poly- the interferometer samples the Fourier transform of sky bright- hedron can be reordered by noting that each polygon edge in ness. Each antenna pair of the interferometric array determines the interior is shared by two polygons, so a new factor B˜ can one sample on the Fourier plane. The maximum separation be- be taken to be the difference between the two B, and the edge tween antennas determines the maximum attainable resolution. i term is computed only once. This explicitly shows why most Theinterferometermostrelevanttoasteroidshapestudiesisthe of the information in the image is indeed from the limb and AtacamaLargeMillimeterArray(ALMA)intheChileandesert. shadow boundary curves discussed in Kaasalainen (2011) and In its full configuration, the interferometer will be capable of Kaasalainen&Viikinkoski(2012).Thevaluesof B˜ forinterior observingattheresolutionofafewmilliarcsecondsatthewave- triangleedgesareusuallyclosetozero(indeed,theyvanishfor lengthof0.3mm,correspondingtotheseparationof16kmbe- thegeometricscatteringB =const.),somostoftheweightison tweenantennas. i theboundaryedges.Inpractice,thisisconfirmedbythesimilar GiventhebrightnessdistributionI(ξ,η)ontheplane-of-sky, results for, e.g., the asteroid Daphne obtained by KOALA and thevisibilityfunctionisdefinedastheintegral (cid:34) ADAM. There is little real information in the interior pixels of adaptiveopticsimages,butontheotherhandtheirerrorsdonot V(u,v)= I(ξ,η)e−2πı(uξ+vη)dξdη, (12) distorttheresulteither:thedifferencebetweentheKOALAand ADAMmodels(forthesameinitialvaluesandshapesupport)is whichisatwo-dimensionalFouriertransformofthebrightness negligible. distribution. Each antenna pair, corresponding to the projected The role of boundary information can be understood when baseline on the plane-of-sky, samples the visibility function. comparingtotheextremecaseoflightcurvedata:ifwesumthe When the visibility function is sampled on a sufficiently dense pixelbrightnessesovertheimageasinphotometry,allthelocal set, the Fourier transform can be inverted to obtain the bright- shape information in the image is lost, so the remaining infor- ness distribution I(ξ,η). But since the function V(u,v) is mea- mation is considerably more dependent on the light-scattering sured only at a finite number of points, the observed visibility propertiesthatareneververywellknown.Butwithimagesthe functionis boundary contrast is always the largest, so it is sufficient to have some kind of reasonable scattering (or thermal distribu- V˜(u,v)= F(u,v)V(u,v), (13) tion)modeltoaccountfortheinteriorpixelcontrasts.Indeed,the where F(u,v)isasamplingfunctioncorrespondingtothesam- uniqueness theorems on the image, interferometry, occultation, pledpointsonthe(u,v)-plane.Thustheobtainedbrightnessdis- orradardataarebasedontherobustboundarycontourinforma- tributionisactually tion (Kaasalainen 2011; Kaasalainen & Viikinkoski 2012; Vi- ikinkoski&Kaasalainen2014).Withdisk-integrateddataonly, I˜(ξ,η)= f(ξ,η)(cid:63)I(ξ,η), (14) Minkowski stability is luckily on our side when using convex models(Kaasalainenetal.2001;Kaasalainenetal.2002). i.e.,aconvolutionofthetruebrightnessdistributionwiththein- verseFouriertransform f(ξ,η)ofthesamplingfunction.Deduc- ingthetruebrightnessdistributionIfromthepartiallymeasured 4. Datasources brightnessI˜isaninverseproblemandthereareseveraliterative The versatility of the ADAM algorithm allows the handling of algorithmstoinferIfromI˜,see,e.g.,Labeyrieetal.(2006). differentdatasourceswithonlyminorchangestotheinstrument- While the images obtained from the interferometer are in- dependentpartoftheprocedure(essentiallyjustthedefinitionof formative,thegreatadvantagewithADAMisthatthealgorithm Articlenumber,page5of11 A&Aproofs:manuscriptno.ADAM &Kaasalainen(2014).Thefastanalyticalcomputationsarethen efficientintheoptimization.Asimplethermophysicalmodelis sufficientforshapereconstruction,asthemostrelevantinforma- tion is contained in the boundary data, which are quite robust withrespecttothethermalmodelused.Thisisincontrasttothe disk-integrated thermal data that are more sensitive to both the surfacepropertiesandthethermalmodel. Forthermalinfraredimaging,ALMAfacilitatesasteroidob- servationsatresolutionlevelspreviouslyattainedonlybyrange- Doppler radar. To explore the possibilities of ALMA for shape modelling, we use the Common Astronomy Software Applica- tions(CASA)packagedevelopedbyNationalRadioAstronom- icalObservatory(NRAO)tosimulateobservations. Consider a hypothetical asteroid with geocentric and helio- centricdistancesof1.5and1AU,respectively.Thethermalflux is observed at the 350 GHz band, a frequency located in an at- mospheric window. There are 11 observation runs, each obser- vationlasting50swithten-secondintegrationtime.Wechoose anantennaconfigurationprovidingapproximateresolutionof10 mas,aresolutionwhichiswellwithinthecapabilitiesofALMA. Theantennaconfigurationandthecorrespondinguv-planesam- plingpatternareshowninFig.4.Uncorruptedplane-of-skyim- ages,witharesolutionoffivemilliarcseconds,aredisplayedin the column on the left in Fig. 5. We use the CASA software to add realistic atmospheric noise to the observations. The result- ing dirty images, which are obtained by assuming that the un- sampledfrequenciesarezero,areshowninthemiddlecolumn. These images are provided for illustration purposes only, since ADAMusestheuv-planesamplesdirectly. To test the ADAM reconstruction method, we use a low- resolution octantoid representation with 75 shape parameters. We also fit a scaling term, common to all observations. Usu- allyitisagoodideatousescalingspecifictoeachobservation, butinthiscaseweknowthatallthesimulatedobservationsare done in similar conditions, so the common scaling term is jus- tified.Thereconstructedshapeisdisplayedintherightcolumn inFig.5,withthesameobservationgeometriesasforthemodel images. The small-scale detail is lost, which is to be expected Fig.5: Simulated,uncorruptedimageswith5maspixelsize(left duetotheaddedatmosphericnoiseandcoarseinstrumentreso- column),observeddirtyimagesgeneratedwithCASA(middle) lution. However, the bifurcated shape is well recovered despite and the reconstructed low-resolution shape model (right). Note the noisy data (note that we used ALMA data only). The com- that the middle-column images are not needed in inversion; we putationtimeforthisreconstructionwasafewminutes.Forreal use the direct FT data instead. The images are what would be observations, complementary data are often provided by other seen if the raw data were deconvolved for viewing purposes as observation methods, e.g., disk-integrated photometric data are isusuallydoneforALMAtargets.Thetestshapemodelisfrom almostalwaysavailable. Ostroetal.(2000). 4.2. Radardata worksdirectlywiththevaluesofthevisibilityfunctionobtained from the instrument. This approach has several distinct advan- The mathematical principles of the feasibility and uniqueness tages: of the inversion of range-Doppler images are discussed in Vi- ikinkoski & Kaasalainen (2014). Here we consider some prac- – Sparsedatamaybeused(e.g.interferometrywithafewbase- tical issues related to shape reconstruction. While other imag- lines) ing methods rely on detecting the radiation of the sun that is – The distribution of antennas does not cause bias, since the reflectedorre-radiatedfromtheasteroid,radarprovidesitsown Fouriertransformisnotinverted illumination,makingitpossibletoobserveanasteroidregardless – Possible artefacts caused by the inversion process are of the position of the sun. Moreover, in contrast to the visible avoided or infrared wavelengths, the frequencies used by the radar are – Thedependencebetweendifferentobservationsistakenau- not significantly distorted by the atmosphere. Additionally, the tomaticallyintoaccount propertiesofthewaveformmaybecarefullycontrolledtoreveal structuraldetailsonthesurfaceoftheasteroid.Theseproperties To obtain the luminosity values for the model surface (i.e., makeitpossibletoobtaindataresolutiondowntotenmetersor the brightness factor B for each facet) in the infrared regime lessfornear-Earthasteroids,butthisdoesnotimmediatelytrans- i of ALMA, we can use the Fourier-series approximation of latetothesamemodelresolutionbecauseoftheinverseproblem Nesvorný & Vokrouhlický (2008) as discussed in Viikinkoski (cf.theItokawaexampleinSect.2.3). Articlenumber,page6of11 M.Viikinkoskietal.:Disk-resolveddatainasteroidmodelling Range-Dopplerradarresolvesanobjectbothintherangeand intheline-of-sightvelocitythattranslatestotheDopplershiftof the reflected pulse. The frequency spectrum may be extracted bytakingthefastFouriertransformofthepulsescorresponding to a particular range gate. The actual hardware implementation andthesignalprocessingarecomplicatedasthedetectedsignals are below the noise level of the instrument (Ostro et al. 2002). Fig. 6: Mid-resolution shape model of the asteroid 2000 ET 70 Fortunately, the technical specifics are not required for the ac- reconstructed from radar images. Viewing directions are from tual shape reconstruction, since the radar performance may be thepositivex,y,andzaxes,respectively. modelledbythepoint-spreadfunctionofthesystem. Thepoint p=(x,y,z)ontheasteroid’ssurfacecanbetrans- ferredtotherange-Dopplerframe(r,D)bythelinearmapping TakingtheFouriertransformonbothsides,applyingthecon- volutiontheorem,andwritingT(u,v)forthesumovertheedges r = (xcosφ+ysinφ)sinθ+zcosφ (15) ofaFouriertransformedtrianglei asinSect.3,weobtain D = ωsinθ(xsinφ−ycosφ), (16) (cid:88) L(u,v)= B I H (u)H (v)T(u,v), (20) i i r D i where ω is the rotation rate of the asteroid around the z-axis Ti∈T and (θ,φ) are the spherical radar direction coordinates as seen fromtheasteroid.Inthismapping,therange-Dopplerradarim- whereH (u)andH (v)are,respectively,theFouriertransforms r D agebrightness Lmaybewrittenasanintegralovertheasteroid ofh andh . r D surfaceS: Like any images, radar plots are seldom correctly aligned (cid:34) insome referenceframedueto theerrorsin thecenterof mass L(r,D)= h (cid:2)r−r(p)(cid:3) h (cid:2)D−D(p)(cid:3) B(p)I(p)dS, (17) prediction,sotheactualpositionofaradarimagewithrespectto r D S thetwo-dimensionalprojectionofthemodelmustbedetermined duringtheoptimization.Thetaskofimagealignmentisfurther whereh andh arethepoint-spreadfunctionsoftheradarsys- D r complicated by the peculiar asymmetric structure of radar im- tem, corresponding to the Doppler-shifted frequency D and the ages, especially the bright leading edge, other possible ridges range r, respectively. Here I is the visibility function, which ofstrongreflectivity,andthefadingfarthest-rangepixels.Ifthe is unity if the point is visible to the radar and zero otherwise. alignment information is unknown, it is usually a good idea to This form is similarly defined for all generalized projections fittheimageoffsetsfirsttoafixedshape,obtainingbetterinitial (Kaasalainen & Lamberg 2006). The mapping p → (r,D) is positionsthatcanbeusedintheshapeoptimization. unique,butitsinverseismany-to-one,sotheinherentinforma- To demonstrate the reconstruction method, we make a fast tion content of a range-Doppler image is considerably smaller ADAMmodelofthenear-Earthasteroid2000ET .Ourgoalis 70 than that of an optical image of similar resolution. Thus, while togetaquickfirstlookataninitialmodel(toberefinedatwill). thenominalresolutionprovidedbyradarmaybeunmatchedby The asteroid was observed during February 2012 at Arecibo anyotherinstrument,thedrawbackofradarimagingisthediffi- and Goldstone observatories using 2380 and 8560MHz range- cultyoftheinterpretationoftheimages. Doppler radars (Naidu et al. 2013). The images obtained from TheradarscatteringfunctionisgivenbyB,whichisusually Arecibohavearesolutionof15minrangeand0.075Hzinfre- asimplecosinelaw quency.Goldstoneimageshaveasomewhatlowerresolution,15 B(p)=C(cid:2)µ(p)(cid:3)n, (18) to75mand1Hz,respectively.Ourgoalistoproducemedium- scaledetailinthereconstructedshape,soatypicalmodelchoice isanoctantoidwithl ∼10andaround1500facets.Ourexam- max where µ is the cosine of the angle between the surface normal pleis“first-resultoriented”onpurpose,soweassumenoinfor- andtheradardirection.TheconstantsC andnmeasurethesur- mationabouttheinstrument-specificdistortions,ormoreimpor- face reflectivity and the specularity of scattering, respectively. tantly, knowledge about the point-spread functions determined ThevalidityofEq.(18)formodellingthemicrowavescattering bytheinstrumentandtheprocessingroutinesoftheradarsignal. fromtheasteroid’ssurfaceisaratherconvolutedquestion.While Thusthepoint-spreadfunctionusedintheshapereconstruction thecosinelawisquitesimplified,itshouldbenotedthatasthe issimplythetwo-dimensionaldeltafunction. reflectedwaveisformedinacomplicatedmannerbythesurface Foreachdataimage,wefit,inadditiontotheshapeparame- material whose properties and roughness are usually unknown, ters,theoffsetwithrespecttothemodelcenterofmassandthe fully realistic modelling of the reflected wave is not computa- reflectivityterminEq.(18).Thereconstructedmiddle-resolution tionally feasible. However, as in the other disk-resolved cases, shapeisshowninFig.6andthemodelfittothedatainFig.7. most of the information is contained in the boundary contours Theshapemodelfitstheboundarycontoursoftheradarimages andisthusindependentofthescatteringmodelused. satisfactorily, but there are some differences in the interior de- Assumingtheasteroidismodelledasapolyhedronwithtri- tails.Thisisaconsequenceoftheparametrizationandfacetsize angularfacetsT,theintegral(17)maycalculatedseparatelyfor chosen for reconstruction. The interior could be reproduced in eachfacet,afterprojectingeachtriangleTi asatrianglePTi on greaterdetailbychoosingadifferentparametrization,forexam- therange-Dopplerplane: plelocallyadaptivesubdivisionsurfaces, orby refiningthe po- (cid:90) sitionsofindividualvertices.Themodeldimensions,shapefea- (cid:88) L(r,D)= BI h (r−r(cid:48))h (D−D(cid:48))dr(cid:48)dD(cid:48), (19) tures,andspinparametersagreewiththosepublishedbyNaidu i i r D Ti∈T PTi edtiffael.re(n2c0e13in)t(htheepospleinlaptiaturadme,ewteersllawreithidinenetrircoarlleimxcitesp)t. for a 2◦ where we have assumed that the visibility I and the scattering Themainpointoftheinitiallowtomiddleresolutionisthat lawBareconstantwithinatriangle. the speed of ADAM is considerable, and a detailed knowledge Articlenumber,page7of11 A&Aproofs:manuscriptno.ADAM oftheinstrumentorthesurfacescatteringphysicsisnotneeded, theoriginequalsthe1-DFToftheprojectionoftheoriginal2- sooneobtainsafirstmodelveryfastbyjustfeedingintheim- Dfunctionontoalineinthesamedirection;seee.g.Bracewell ages. The middle-resolution radar-based reconstruction (using 2003),weget 82 radar images) was computed in less than an hour on a stan- dardlaptop,andGPUprogrammingcanreducethecomputation S(f)=I(f cosγ,−f sinγ)P(f), (22) timesignificantly.Thismakespossibleabroadsamplingofthe wherethecalligraphiccharactersdenotetheFourier-transformed parameter space or real-time experimenting with various mod- functions. Now it is obvious that S(f) is a slice of a Fourier- els.Oncealower-resolutionmodelhasbeenadoptedasthefinal transformedbrightnessdistributionalongalinethroughtheori- frame,itisstraightforwardtorefineitfurther.However,thisre- gin, multiplied with the Fourier transform of the point-spread quires accurate information about the point-spread and scatter function.Moreover,thismeansthatthesamealgorithmmaybe functions. usedtofitbothFGSandadaptiveopticsdata,andsimilarlyboth CWDopplerdataandtherange-Dopplerimages.Inotherwords, 4.3. Adaptiveopticsandotherimages we extract a one-dimensional Fourier transform from the 2-D model FT, and compare this with the 1-D FT formed from the ModelreconstructionfromadaptiveopticsimagesintheFourier datainthesamewayasinthefull2-Dcase. approach is extensively covered in Viikinkoski & Kaasalainen (2014),alongwithanexampleofthereconstructionofthemain belt asteroid Daphne from adaptive optics images and photom- 5. ADAMalgorithm etry (Fig. 2). Other imaging data may be incorporated into the frameworkusingasimilarapproach.Forinstance,flybyimages TheflowchartinFig.8describestheworkingsofADAM.More are,fromtheviewpointofthereconstructionalgorithm,concep- specifically,thealgorithmmaybedividedinfivedistinctsteps: tuallyidenticaltotheAOimages.Thisisoneoftheattractions 1. For each data image D and observation geometry E, the ofADAM:atthebareminimum,theuserdoesnotneedtoknow i i two-dimensional Fourier transform FD(u,v) of D is sam- anything about the images except their projection matrix and i i pled at a set of points {(u ,v )}, j = 1...N, on the spatial epochs. ij ij i frequencyplane.Thesizeofthesetischosentocorrespond We note that the photometric data were actually not even to the level of resolution. For pixel images, the transform needed in reconstructing Daphne (except for a better period canbecomputedbyEq.(10)whenconsideringeachpixelas valuethanwithAOimagesonly).Theshaperesultswithorwith- a polygon, or by using fast Fourier transform functions for outphotometryaresimilar.ThisshowsthatevensparseAOdata chosengridpoints(butthetimespentforFD(u,v)isirrele- arewellsufficientformodellingasteroidspinstatesandshapes i vantasmostofthecomputationsareforthetrialmodels). indetail. 2. The shape support and resolution level (number of parame- ters)arechosen.Theparametersareinitializedsuchthatthe 4.4. One-dimensionalprojectionoperators initial shape is a sphere approximately equal in size to the target. In the regime between disk-integrated and disk-resolved ob- 3. For each observation geometry E, the Fourier transform i servations there are one-dimensional operators that project the FM(u,v) of the corresponding projection image M of the i i plane-of-sky onto a line. Typical examples are the continuous- model is calculated as described in the previous sections, wave (CW) Doppler spectra that measure the distribution of together with the partial derivatives of FM(u,v) with re- i the reflected power in frequency only, and the fine guidance specttoalloptimizedparameters.Ray-tracing,scatteringor sensors (FGS) onboard the Hubble Space Telescope, measur- luminositymodels,andcoordinatetransformsfortheimage ing the brightness distribution along an instrument axis. One- planearediscussedinKaasalainenetal.(2001),Kaasalainen dimensional projections are seldom sufficient for actual shape (2011),andViikinkoski&Kaasalainen(2014). reconstruction, but they may contain useful information about 4. Anobjectivefunctionχ2 isformed,withthesquarenormof the object’s size or indications about the bifurcated structure thecomplex-valuedFTfiterror: (Kaasalainen & Viikinkoski 2012), and combined with other sourcestheyfacilitateshapeinversion. In both examples, the measurement can be written in the (cid:88)(cid:88)Ni (cid:13)(cid:13)(cid:13)(cid:13)FDi(uij,vij)−e2πı(oixuij+oyivij)Si(uij,vij)FMi(uij,vij)(cid:13)(cid:13)(cid:13)(cid:13)2 form i j=1 (cid:90) (cid:88) + λγ2 =:χ2, S(x)= I(ξ,η)P(x−ξcosγ−ηsinγ)dξdη, (21) i i i (23) where I(ξ,η) is the plane-of-sky brightness (optical or radar) distribution of an object, P is the point-spread function of the where(ox,oy)istheoffsetbetweenthedataimageD andthe i i i instrument, and the angle γ corresponds to the rotation of the modelimage M,and,bytheconvolutiontheorem,S isthe i i sensorintheimageplane.InKaasalainen&Viikinkoski(2012), Fouriertransformofthepoint-spreadfunctionoftheimaging theintegralwasevaluatedusingaMonteCarlomethod:thepro- system.Theγ representvariousregularizationtermsdefined i jectedmodelwassprinkledwithuniformlydistributedsampling above. points,andtheintegralwasapproximatedasasumoverthevis- Forbrevity,wehavewrittenonlyonedatamodeinEq.(23); ibleandilluminatedsamplingpoints.Herewedemonstratehow any number of modes with their goodness-of-fit functions theFouriertransformmethodcanbeusedtointerprettheintegral can be added to the sum. These functions for photometry asatomographicoperatorontheFourierplane. andsilhouettes(occultations)aregiveninKaasalainenetal. Taking the Fourier transform on both sides and using the (2001),Kaasalainen(2011),andViikinkoski&Kaasalainen projection-slicetheorem(asliceofa2-DFTalongalinethrough (2014).Thedeterminationoftheweightsofthedatamodes Articlenumber,page8of11 M.Viikinkoskietal.:Disk-resolveddatainasteroidmodelling Fig.7:Examplesofrange-Dopplerimagesoftheasteroid2000ET fromAreciboobservatory(rows1and3)andcorresponding 70 simulated images from the mid-resolution model (rows 2 and 4). The contrast scale of the model image is somewhat modified to revealinnerimagefeatures. (as λ for the regularization functions) is discussed in of each M to be a free parameter and use χ2; this is useful i i Kaasalainen (2011) and Kaasalainen & Viikinkoski (2012). in the case where the mean intensity of D is corrupted by i Weightscanbedeterminedforanysubsetsofdata(e.g.,less excessive noise in the image background (this is typical for reliableimages)ifnecessary. range-Doppler images). This causes the χ2 -based solution rel Inaddition,theintensitylevelofeachdataandmodelimage tohaveaslightlywrongsizetocompensateforthe“diluted” mustbenormalized.Oftenitisenoughtodividebothmodel normalized intensity level inside the actual object region of M and data image D by their respective mean intensities. D. i i i Equivalently,writing (cid:88)(cid:13) (cid:13) 5. Theshapeandspinparametersandtheoffsets(ox,oy)aswell χ2 := (cid:13)(cid:13)Di(uij,vij)−M˜i(uij,vij)(cid:13)(cid:13)2+λγ2, (24) as the possible intensity level factors C minimiizinig χ2 are i ij determined with a suitable method such as the Levenberg- wehave Marquardt algorithm. If there are several hundreds of pa- rameters, as in the case of fitting all shape vertices directly χ2 =(cid:88)(cid:13)(cid:13)(cid:13)(cid:13)Di(uij,vij) − M˜i(uij,vij)(cid:13)(cid:13)(cid:13)(cid:13)2+λγ2, (25) (instead of using function series or control points) to pro- rel (cid:13)(cid:13) (cid:104)(cid:107)D(cid:107)(cid:105) (cid:104)(cid:107)M˜ (cid:107)(cid:105) (cid:13)(cid:13) duce maximal resolution, the conjugate gradient method is ij i i efficient(Kaasalainenetal.2001). where the mean (cid:104)·(cid:105) is taken over {(u ,v )}, j = 1...N. ij ij i However, sometimes it is better to allow the intensity level Articlenumber,page9of11 A&Aproofs:manuscriptno.ADAM Shape ciples to understand the limitations and information content of parameters thedatasources. Acknowledgements. This work was supported by the Academy of Finland project“Modellingandapplicationsofstochasticandregularsurfacesininverse Surface problems”andtheCoEininverseproblemsresearch.TheworkofJDˇ wassup- mesh portedbythegrantGACRP209/10/0537oftheCzechScienceFoundation.We thankJean-LucMargotforprovidingtheradarimagesofasteroid2000ET70. Transform Observation tocamera frame References 2D Bracewell,R.2003,Fourieranalysisandimaging(Springer) projection Carry,B.,Kaasalainen,M.,Merline,W.J.,etal.2012,Planetary andSpaceScience,66,200 s er Dˇurech, J., Carry, B., Delbo, M., Kaasalainen, M., & Vi- Instrument Fourier met ikinkoski,M.201,AsteroidsIV PSF transform para Dˇurech,J.,Grav,T.,Jedicke,M.,Kaasalainen,M.,&Denneau, e at L.2006,Earth,Moon,andPlanets,97,179 d up Dˇurech, J. & Kaasalainen, M. 2003, Astronomy and Astro- physics,404,709 Data FFT Optimization Dˇurech,J.,Vokrouhlický,D.,Baransky,A.R.,etal.2012,A&A, 547,A10 Kaasalainen,M.2004,A&A,422,L39 Regularization Kaasalainen,M.2011,InverseProblemsandImaging,5,37 Kaasalainen,M.&Dˇurech,J.2006,ProceedingsoftheInterna- Fig. 8: ADAM optimization algorithm as a schematic for one tionalAstronomicalUnion,2,151 imagetype. Kaasalainen,M.&Lamberg,L.2006,InverseProblems,22,749 Kaasalainen,M.,Mottola,S.,&Fulchignoni,M.2002,Asteroids III,139 6. Conclusionsanddiscussion Kaasalainen, M., Pravec, P., Krugly, Y. N., et al. 2004, Icarus, 167,178 ADAM can handle radar data, images, interferometry (also in Kaasalainen,M.&Torppa,J.2001,Icarus,153,24 the thermal infrared), photometry, and occultations separately or in combinations. The ADAM procedure consists of a num- Kaasalainen,M.,Torppa,J.,&Muinonen,K.2001,Icarus,153, ber of modules, and there are various options for each mod- 37 ule, customized to the end-user (e.g., the adopted optimization Kaasalainen, M. & Viikinkoski, M. 2012, Astronomy & Astro- method,regularizationfunctions,shapesupportandmeshstruc- physics,543 ture, ray-tracing method, coordinate system, luminosity/scatter Kaasalainen,M.&Dˇurech,J.2013,inAsteroids,ed.V.Badescu model, image formats, etc.). In this sense, ADAM is a toolbox (SpringerBerlinHeidelberg),131–150 andasetofbuildingblocksratherthanaready-madeprogram. Kobbelt, L. 2000, in Proceedings of the 27th annual confer- The main idea behind ADAM is the efficient use of the enceonComputergraphicsandinteractivetechniques,ACM Fouriertransforminhandlingbothimagesandone-dimensional Press/Addison-WesleyPublishingCo.,103–112 projectiondata.Fourieranalysishaslongbeenusedin,e.g.,im- Labeyrie,A.,Lipson,S.G.,&Nisenson,P.2006,Anintroduc- age compression because it captures the essential information tion to optical stellar interferometry (Cambridge University conveniently in a hierarchy of resolution. In the same vein, the Press) FTapproachinADAMisidealforproducingmodelsofdesired Loop,C.1987,Master’sthesis,UniversityofUtah levelsofresolution,especiallyinthelow-tomedium-resolution category. In this framework, the goodness-of-fit function be- Naidu, S. P., Margot, J.-L., Busch, M. W., et al. 2013, Icarus, tween the model and the data is easy to compute and use in 226,323 optimization.Whatismore,itsconvergencepropertiesaremore Nesvorný,D.&Vokrouhlický,D.2008,AJ,136,291 robustthaniftheimageswereuseddirectly(infact,onedoesnot Nolan, M., Bramson, A., & Magri, C. 2014, in Asteroids, necessarilyevenhavetolookattheimagesorknowmuchabout CometsandMeteorsinHelsinki theinstrumentthatproducedthem).Ananalogyofthisparadox Ostro,S.J.,Benner,L.A.M.,Magri,C.,etal.2005,Meteoritics isthesimpleone-dimensionalproblemofrealigningtwophase- &PlanetaryScience,40,1563 shifted copies of a dual-frequency signal. If one does this by minimizing the signal difference by optimizing the shift in the Ostro,S.J.,Hudson,R.S.,Benner,L.A.,etal.2002,Asteroids III.Univ.ofArizonaPress,Tucson,151 originalamplitudespace,therearemultiplelocalminima,butin frequencyspacetheoffsetisfoundimmediately. Ostro,S.J.,Scott,R.,Hudson,etal.2000,Science,288,836 Viikinkoski,M.&Kaasalainen,M.2014,InverseProblemsand Despite its automatic character, ADAM should not be used Imaging,8,885 asablackbox:asteroidreconstructionisacomplicatedinverse problem,andoneshouldbefamiliarwithitsmathematicalprin- Articlenumber,page10of11

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.