ebook img

Active optics Shack-Hartmann sensor: using spot sizes to measure the seeing at the focal plane of a telescope PDF

0.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Active optics Shack-Hartmann sensor: using spot sizes to measure the seeing at the focal plane of a telescope

Mon.Not.R.Astron.Soc.000,1–??(2011) Printed12January2012 (MNLaTEXstylefilev2.2) Active optics Shack-Hartmann sensor: using spot sizes to measure the seeing at the focal plane of a telescope P. Martinez,1 ⋆ J. Kolb,2 M. Sarazin,2 J. Navarrete 3 1UJF-Grenoble1/CNRS-INSU,InstitutdePlane´tologieetd’AstrophysiquedeGrenoble(IPAG)UMR5274,Grenoble,F-38041,France 2EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,D-85748,Garching,Germany 3EuropeanSouthernObservatory,AlonsodeCordova3107,Casilla19001,Vitacura,Santiago,Chile 2 1 0 2 Released2011XxxxxXX n a J ABSTRACT 1 Real-time seeing estimation at the focus of a telescope is nowadays strongly emphasized 1 as this knowledge virtually drives the dimensioning of adaptive optics systems and instru- mentoperationalaspects. In this contextwe study the interestof using active opticsShack- ] M Hartmann(AOSH)sensorimagestoprovideaccurateestimateoftheseeing.TheAOSHprac- tically delivers long exposure spot PSFs – at the critical location of the telescope focus – I beingdirectlyrelatedtotheatmosphericseeinginthelineofsight.AlthoughAOSHsensors . h are not specified to measure spot sizes but slopes, we show that accurate seeing estimation p fromAOSHimagescanbeobtainedwithadedicatedalgorithm.Thesensitivityandcompar- - o isonoftwoalgorithmstovariousparametersisanalyzedinasystematicway,demonstrating r thatefficientestimationoftheseeingcanbeobtainedbyadequatemeans. t s Keywords: Sitetesting–atmosphericeffects–methods:numerical–methods:dataanalysis a [ 1 v 0 1 INTRODUCTION atzenith.Forthispurpose,severalflavorsofimagescanbeusedat 3 thecriticallocationofthetelescopefocii:(1/)scientificinstrument Theevaluationoftheseeingisparamountforselectingastronomi- 3 images,(2/)guideprobeimages,(3/)activeopticsShack-Hartmann 2 calsitesandfollowingtheirtemporalevolution.Likewise,itsesti- images.AttheVLT,focalplanesareequippedwithanarmusedfor . mationisfundamentalforthedimensioningofadaptiveopticssys- 1 acquisitionofanaturalguidestar.Thelightfromthisstaristhen temsandtheirperformancepredications.Thisknowledgevirtually 0 splitbetweenaguideprobeforanaccuratetrackingofthesky,and drivesinstrumentsoperationalaspectsatatelescope,andmoreem- 2 a Shack-Hartmann wavefront sensor used by the active optics to phasisismadetodevelopanduseaccuratereal-timeseeingestima- 1 controltheshapeoftheprimarymirror. toratthefocusofatelescope. : v The atmospheric seeing is commonly measured by the dif- However seeingestimationfromthefull-widthathalfmaxi- Xi ferential image motion monitor (DIMM, Sarazinetal., 1990) in mum(FWHM)ofaPSFstronglyreliesontheexposuretimethat most observatories, or by means of alternative seeing monitors, mustbelongenoughsothattheturbulencehasbeenaveraged;en- r a e.g.,GeneralizedSeeingMonitor(GSM,Ziadetal.,2000),Multi- suringthatallrepresentationsofthewavefrontspatialscaleshave Aperture Scintillation Sensor (MASS, KornilovandTokovinin passed through the pupil. This is thus dependent on pupil size 2001). Being localized away from the telescope platform, such a and turbulence velocity, though it is commonly admitted that 30 devicedeliversseeingestimatethatcansignificantlydifferfromthe seconds average properly the turbulence, introducing significant effectiveseeingseenatatelescopefociibecauseofpointingorien- FWHMbiasesotherwise.Thisalreadydiscardstheuseoftheguide tationand/or height above theground differences, or local seeing probeasexposuretimesarenotlongerthan50milli-second,while bias(dome contribution). Theeffect of the twolatter willlargely scientificinstrumentimagesdonotentirelycomplywiththereal- expandinthecontextofthenextgenerationoftelescopes:theex- timeaspectoftheseeingestimation.Instrumentsareaffectedbyan tremelylargetelescopes. observationalbias:unavailabilityforalargerangeofseeingcondi- Ontheotherhand,theatmosphericseeingcanbededucedat tions,andareadditionallyaffectedbythetelescopefieldstabiliza- thefocusofalargetelescopefromthewidthofthelong-exposure tion. pointspreadfunction(PSF)assumingsuccessivecorrectionstoap- ActiveOpticsShack-Hartmann(AOSH)deliverscontinuously ply(turbulenceouterscale,wavelength,andairmass).Weremind real-timeimagesoflongexposurespotPSFs(typically45seconds) thereaderthattheseeingisdefinedatλ=500nmforobservations atthesamelocationof scientificinstruments.AOSHimagespro- videsimultaneouslyvariousdata:slopes,intensities,andspotsizes. Whenshortexposuresareused,theinformationprovidedbyboth ⋆ [email protected] slopesandintensities(i.e.,scintillation)canbeusedtoretrieveCn2 (cid:13)c 2011RAS 2 P.Martinezet al. profile using correlations of these data from two separated stars (Robertetal.,2011).Inthispaper,weproposetousethespotsizes inthesub-apertures toretrievetheatmospheric seeingintheline ofsight.Inotherwords,weproposetousetheactiveopticsAOSH sensorsystemofthetelescopeasaturbulencemonitortoprovide accurateseeingestimationdirectlyatthetelescopefocus.Forthis purpose, careful assumption of the long-exposure PSF profile(to ensurepreciseFWHMevaluation), andaccuratederivation ofthe seeingfromtheestimatedFWHMarerequired. Inthiscontext,weinvestigatetheperformanceandlimitations oftwodifferentmethodstoestimatetheseeingfromlong-exposure AOSHspotPSFs.Thecomparisonandselectionoftheuppermost modus operandi isabyproduct ofthiswork. Ourstudy iscarried out by means of extensive simulations, and using real data from theAOSHimagesobtainedattheVLT.InSect.2wedescribetwo differentalgorithmsdevelopedtoretrievetheseeingfromlongex- posureimages,andinSect.3wepresentoursimulationhypothe- Figure1.SimulatedAOSHimagebasedontheVLTAOSHgeometry. sis,anddiscussourresults.InSect.4real-datafromtheVLTAOSH databasearere-analyzedandcomparedtosynchronousimagemea- surementsobtainedattheVLT(UT4)withtheinstrumentFORS2 theouterscaleL .Theexpressionforthephasestructurefunction 0 (Appenzeller,etal.1998).FinallyinSect.5wedrawconclusions. (D )withfiniteouterscaleL canbefoundin(e.g.,Tatarskii1961; φ 0 Tokovinin 2002). As large-scale wavefronts are anything but sta- tionary,AOSHlong-exposurespotPSFscanbeinafirstorderde- 2 EXTRACTINGSEEINGFROMSHACK-HARTMANN scribedbyEq.2,whileaposterioricorrectionbyL0 experimental SPOTSIZES estimateismandatory.TheexaminationoftheL0influencewillbe treatedinthefollowing. Accurate seeing estimation from the full-width at half maximum (FWHM)ofaturbulence-limitedlongexposurePSFrequirestwo conditions:(1/)carefulassumptionofthelong-exposurePSFpro- 2.2 SeeingandFWHM filetoensurepreciseFWHMevaluation;(2/)accuratederivationof TheKolmogorov-ObukhovmodelpredictsdependenceofthePSF the seeing from the estimated FWHM.In the following, we treat FWHMε onwavelengthλandr : these two aspects, and present in details the two dedicated algo- 0 0 rithms. ε =0.976λ/r . (3) 0 0 Equation3isthedefinitionoftheseeing(assumedatλ=500nm, 2.1 Long-exposurePSFprofile andforobservationsatzenith).However,thephysicsofturbulence impliesthatthespatialpowerspectraldensity(PSD)ofphasedis- Thetheoreticalexpressionofalong-exposurePSFcanbedescribed tortions W (v) deviates from the pure power law at low frequen- through the expression of its optical transfer function (OTF) ob- φ cies.ApopularvonKa`rma`n(vK)turbulencemodel(e.g.,Tatarskii tainedbymultiplyingthetelescopeOTF,denotedT (f),bytheat- 0 1961; Ziadetal., 2000) introduces an additional parameter, the mosphericOTF: outerscaleL thatdescribesthelow-frequencybehaviorofthetur- 0 T (f)=exp[−0.5D (λf)], (1) bulencemodelphasespectrum: a φ where f is the angular spatial frequency, λ is the imaging wave- Wφ(v)=0.0229r0−5/3(|v|2+L−02)−11/6. (4) length,andD (r)isthephasestructurefunction(Goodman1985; φ Equation4isthedefinitionofL ,wherevisthespatialfrequencyin Roddier,1981).Thisexpressionismiscellaneousandapplicableto 0 m−1.TheKolmogorov-ObukhovmodelcorrespondstoL =∞.In anyturbulencespectrumandanytelescopediameter. 0 thevKmodel,r describesthehigh-frequencyasymptoticbehavior The analytic expression for the phase structure function in the 0 of the spectrum. In thiscontext, theouter scaleof theturbulence Kolmogorov-ObukhovmodelcanbefoundinTatarskii(1961)and (L ) plays a significant rolein theimprovement of image quality isexpressedby D (r) = 6.88(r/r )5/3,wherer istheFried’sco- 0 φ 0 0 (i.e.,FWHM)atthefocusofatelescope.Theimagequalityisdif- herenceradius(Fried1966).Finally,thelong-exposureOTFcanbe ferent(andinsomecasesbyalargefactor,e.g.,30%to40%inthe expressedas: near-infrared)fromtheatmosphericseeingthatcanbemeasuredby T(f)=T (f)×exp[−3.44(λf/r )5/3], (2) dedicatedseeingmonitors,suchastheDIMM. 0 0 ThedependenceofatmosphericlongexposureresolutiononL is 0 andlong-exposure PSFsareaccuratelydescribedbyEq.2.Inthe efficientlypredictedbyasimpleapproximateformula(Eq.5)intro- caseofalargeidealtelescopewithdiameterD≫r thediffraction 0 ducedbyTokovinin(2002),andconfirmedbymeansofextensive termT canbeneglected,whileinthecaseofAOSHsub-apertures 0 simulations (Martinezetal., 2010a,b), where we emphasized that ofsizeditcannot(d≈r0). theeffectoffiniteL isindependentofthetelescopediameter.The 0 WenotethatEq.2assumesnonrealisticbehaviorofthelow- validityofEq.5hasbeenestablishedinaL /r >20andL /D6500 0 0 0 frequencyoftheturbulencemodelphasespectrum.Itisfirmlyes- domain,whereourtreatmentofthediffractionfailedforsmalltele- tablished that thephase spectrum deviates from thepower law at scopediameters(D<1m, Martinezetal.,2010a). lowfrequencies(Ziadetal.,2000;Tokovininetal.,2007),andthis behavior is described in a first order by an additional parameter, FWHM≈ε 1−2.183(r /L )0.356, (5) 0 p 0 0 (cid:13)c 2011RAS,MNRAS000,1–?? Seeing estimationfromShack-Hartmannimages 3 As a consequence, to deduce atmospheric seeing ε (at 500nm) 0 from the FWHM of a long-exposure PSF the correction implied byEq.5ismandatorypriortoairmassandwavelengthcorrection. Wewillshowthatthisdoesconcerneventhecaseofsmallsize(d) AOSHsub-apertures,whereL ≫d. 0 2.3 Algorithmsprinciple We consider two different algorithms to extract the FWHM of a longexposureAOSHimage.Thesealgorithmsdifferfromtheiras- sumptionsonthesub-aperturespotprofileandthewaysub-aperture diffractionisaccountedfor,whiletheyrelyonacommonprelimi- narystepfortheselectionofspotsretainedfortheanalysis. 2.3.1 AOSHspotsselection Figure2.FWHMestimationfromsimulatedAOSHimagesasfunctionof Forbothalgorithms,backgroundestimationisperformedonacor- theseeingobtainedwithA1andA2. neroftheimagewithoutspots,andhotpixelsaresettotheback- ground. The cleanest and un-vignetted spots are selected in each frame for the analysis. These extracted spots are oversampled by This quadratic subtraction defined in Eq. 8 is justified by the as- afactortwo,re-centeredandaveraged.Theaveragingreducesthe sumptionthatthetwotermsofEq.7canbeapproximatedtoGaus- influenceofpotentiallocalCCDdefects(e.g,badpixels,biasstruc- sianfunctions. tures,etc...).Inpractice,theaveragedspotisbasedonhundredsof selectedspots. 3 CALIBRATIONANDRESULTS 2.3.2 OTF-basedalgorithm In order to calibrate and compare these two algorithms, we test The first algorithm, hereafter A1, has been proposed by them with simulated AOSH images. To match our simulations Tokovininetal.,(2007)andisbasedonthelong-exposurespotPSF to real situation, we assume identical conditions as the ones en- profile defined in Eq. 2. The modulus of the long-exposure opti- countered with the AOSH system of the VLT. Assumptions for cal transfer function of the averaged spot is calculated and nor- the AOSH model and atmospheric turbulence are described bel- malized. Itisthen dividedby thesquaresub-aperture diffraction- low.Thewavelengthconsideredthroughthestudyis500nmexcept limitedtransferfunctionT (f): whentheeffectofthewavelengthisanalyzed. 0 T (f)=(1−[λf /d])×(1−[λf /d]) (6) 0 x y 3.1 Simulationhypothesis wheredisthesizeoftheAOSHsub-aperture.Atthisstagethecut oftheT(f)alongeachaxiscanbeextractedandfittedtotheexpo- 3.1.1 Shack-Hartmannmodel nentialpartofEq.2toderiveasingleparameterr ,orequivalently 0 OursimulationsarebasedonadiffractiveShack-Hartmannmodel FouriertransformedtoderivetheFWHMoftheresultingspotPSF thatreproducestheVLTAOSHgeometry:24sub-aperturesacross profile using a 2-dimensional elliptical Gaussian fit. The orienta- thepupildiameter,22pixelspersub-aperture,0.305′′ pixelscale, tionofthelongandsmallaxisofT(f)isfoundbyfittingitwitha d = D/24 = 0.338m.ThevalidityoftheAOSHmodelhasbeen 2-dimensionalellipticalGaussian. verifiedthroughseveralaspectssuchastheplatescale,spotsizes, slopemeasurements,andphasereconstruction. 2.3.3 PSF-basedalgorithm The second algorithm, hereafter A2, has been proposed by 3.1.2 Atmosphericturbulence Noetheetal.,(2006),andisinuseasadiagnostictoolattheVLT The atmospheric turbulence is simulated with 300 uncorrelated sinceMay2010.A2reliesontheassumptionthatAOSHspotscan phase screens of dimension 3072 × 3072 pixels (i.e. 45 meters bedescribedbythefollowingrotationallysymmetricPSFprofile: width).Theprincipleofthegenerationofaphasescreenisbasedon F(u)∝F0(u)⊗exp[−(u/r0)5/3] (7) theFourierapproach:randomizedwhitenoisemapsarecoloredin where u is the spatial coordinate, F the diffraction limited PSF theFourierspacebytheturbulencepower spectral density(PSD) 0 oftheAOSHsub-aperture.Thesymbol⊗denotestheconvolution function, and the inverse Fourier transform of an outcome corre- product.A2reliesonanapproximatePSFprofilebasedonthean- spondtoaphasescreenrealization. alyticalexpressionoftheOTFdefinedinEq.2.ThealgorithmA2 Thevalidity of theatmospheric turbulence statistichasbeen worksasfollow:aninitialestimationoftheFWHM(hereafter,θ)is carriedout onthesimulatedphasescreens: thevalueoftheouter derivedbyfittingtheaveragedspotprofiletotheexponentialpart scale(L0),Friedparameter(r0)andseeingofthephasescreenshave of Eq.7. Then A2 approximately accounts for F (u) by quadrat- beenconfirmedbydecompositionontheZernikepolynomialsand 0 ically subtracting the sub-aperture diffraction θ = λ/d from the variancemeasurementsoverthe300uncorrelatedphasescreens.In 0 estimatedFWHM: addition thevalidity of thelong-exposure AOSHimage has been verified.InFig.1,weshowanexampleofasimulatedAOSHim- FWHM ≈ qθ2−θ02. (8) age. (cid:13)c 2011RAS,MNRAS000,1–?? 4 P.Martinezet al. Figure3.Sub-aperturediffractionremovalasfunctionoftheimagingwavelengthappliedonAOSHimagesgeneratedat500nmforA1(left)andA2(right). Figure4.A1characterization:impactoftheturbulenceouterscaleL0(left)andtheAOSHimagingwavelength(right). WehavegeneratedAOSHimagesthroughatmosphericturbu- similar although A2 constantly provides smaller FWHM estima- lencewithseeingconditionsfrom0.1to1.8′′with0.1′′increment. tion than A1. In addition, A1 provides a smoother response than Exceptwhentheturbulenceouterscaleisanopen-parameter,L is A2totheseeing;A2exhibitsirregularitiesinitsbehavior. 0 alwaysdefinedat22meters–VLTParanalmedianvalue,seefor Two regimes are observable: (1/) when the seeing is better than instanceDali,etal.(2010). 0.6′′(A1)or0.3′′(A2)theFWHMishigherthantheseeing,which islikelyduetotheunder-samplingoftheSH(pixelscaleis0.305′′), (2/)whentheseeingdegradesfurtherthan0.6′′ (A1)or0.3′′ (A2) 3.2 Results the FWHM is smaller and asymptotically converges towards Eq. 5 (L =22m). This last result is important as it demonstrates that InthissectionweprovideresultsfromthecomparisonofA1and 0 although d ≪ L , the FWHM of a long-exposure PSF obtained A2,whilethebestalgorithmrevealedwillbefurthercharacterized 0 with very small telescope diameters (here AOSH sub-apertures againstseveralimportantparameters.Thiscalibrationprocessisa of ∼30cm) does follow Eq. 5. We note that A2 convergence to necessary step prior to on-sky implementation of such numerical Eq.5(L =22m)isinaccurateforworstseeingconditionsthan1.5′′. tool,andwillprovideinsightsforthere-analysisoftheVLTAOSH 0 databasepresentedinSect.4. –Sub-aperturediffractionremoval: A1andA2differfromthewaytheyaccountforthethesub-aperture 3.2.1 Algorithmscomparisonandselection diffraction. A1 is based on the deconvolution of a square sub- –Responsetotheseeing: apertureOTF(Eq.6),whileA2makesuseofaquadraticsubtrac- Figure 2 shows the FWHM extracted with both A1 and A2 as tion of θ (Eq. 8). To compare these two approaches, we assess 0 a function of the seeing. The black dotted line corresponds to a thesensitivityofbothalgorithmsonthesub-aperturediffraction.In pureequivalencebetweenseeingandFWHM(i.e.Eq.5assuming practice,A1andA2havebeentestedonthesamesetofAOSHim- L =∞), while the black dashed line corresponds to Eq. 5 with agessimulatedat500nm,whiletheinputimagingwavelengthused 0 L =22m being in agreement with the statistic of the simulated tofeedthealgorithmsforremovingthediffractionλ/dvariesfrom 0 atmospheric turbulence. The general trend of both algorithms is 400to800nm.Sincethebandwidthcenterofthewavefrontsensor (cid:13)c 2011RAS,MNRAS000,1–?? Seeing estimationfromShack-Hartmannimages 5 pathcanvarywiththeguidestartype,pushingthistestfurtherwith 3.2.4 Spotsampling suchalargerangeofimagingwavelengths(i.e.,wideramount of Tounderstandtheasymptoticaltrendofthealgorithmresponseto diffraction)isherejustified. theseeingpresentedintheprevioussubsections,weanalyzetheef- Results are presented in Fig. 3 and show that A1 and A2 fectofthespotsamplingontheFWHMmeasurement.Resultsare behave similarity for seeing conditions > 1.0′′, while for lower presentedinFig.5(left)whereitisshownthatforagivenseeing, seeing by contrast to A1, A2 exhibits strong non reliable irreg- theestimationgetsbetterwhenthesamplingimproves.FWHMat ularities. Subtracting quadratically the diffraction FWHM θ as 0 0′′/pixelsamplingcorrespondstotheoreticalvaluesobtainedwith carriedoutbyA2isaccurateaslongastheeffectofthediffraction Eq.5.Aroughestimationindicatesthat5pixelsperFWHMisre- is small relatively compared to the turbulence (d ≫ r ), and 0 quiredfor accurate measurement, though itcan becalibratedand therefore fails at large r (good seeing conditions). In fact, the 0 correctedincaseofpoorsampling. FWHMθ variesfrom0.24′′ to0.49′′ whenthewavelengthvaries 0 from400to800nm. TheactualAOSHPSFsareaconvolutionof the atmospheric blur and diffraction, and since neither of these 3.2.5 Fieldstabilization individuals broadening factors are Gaussian, calculation of the combinedFWHMasaquadraticsumofindividualcontributionsis ThetelescopefieldstabilizationremovesthelowfrequencyTip-Tilt notaccurate. componentsgeneratedby,amongotherthings,windshacking.As aconsequencethefieldstabilizationalsoremovestheslowturbu- –Algorithmselection: lence,whichmayreducetheFWHMofaPSFimage.Toassessthe Considering all the aspects treated previously, it appears that A1 impactofthefieldstabilizationwecomparetheFWHMmeasure- ismore appropriate than A2. Therefore, inthe following wewill mentsonsimulatedAOSHimageswheretheTip-Tiltcontribution considerA1onlyforfurthercharacterizationforthesakeofclarity (inthefulltelescopepupil)hasbeencompletelyremoved(i.e.,per- untilSect.4,whererealdataobtainedattheVLTwithA2willbe fect field stabilization with infinite bandwidth) to that of AOSH re-analyzed. Thenext subsections concentrate onthedependency imagesleftunmodified. Thistest hasbeen carriedout for several ofA1tovariousparameterswiththeobjectiveofallowingproper seeingconditions(0.1,0.9,1.8′′)andouterscalevalues(10m,22m, calibrationofthealgorithm.Nonetheless,itshouldbenotedthatA2 andinfinitecase).Noimpactatallhasbeenrevealedbutata0.01′′ demonstratesidenticaldependencytotheseparameterssuchthata level, which is negligible. The estimation of the seeing from the calibrationofA1orA2canbecarriedoutsimilarly. widthofAOSHspotsisthereforenotsensitivetothefieldstabiliza- tion,whichrisesasarelevant advantage. TheTip-Tiltinthesub- aperturecomesfromthecontributionofseverallow-ordermodes, whichexplainswhytheAOSHspotPSFFWHMissensitivetothe 3.2.2 Turbulenceouterscale turbulenceouterscalebutnottofieldstabilization. In Fig. 4 (left) the extracted FWHM with A1 as function of the seeing isshown for several outer scale (L ) values: 10, 22m, and 0 3.2.6 Atmosphericdispersion infinite outer scale (although likely about 200 meters due to the physical finitesize of the phase screens used in simulation). It is Except for data taken at zenith, individual spot inthe AOSHim- observablethatA1startstobesensitivetotheouterscaleforseeing agecanexhibitelongationinonedirectionduetouncorrectedat- higherthan0.5′′.FromresultspresentedinFig.4(left)itisfurther mosphericdispersion.A1allowstheestimationofFWHMintwo established(seeSect.3.2.1)thatAOSHsub-aperturesarenotsmall orientations:thesmallandthelargeaxes.Thealgorithmhasbeen enoughsothataspotFWHMcanbeapproximatedtoε ,i.e.,the tested on 200 real AOSH images obtained at the VLT-UT3 Nas- 0 AOSHspot FWHMmeasurement doesdependontheouterscale mythfocus(notequippedwithanatmosphericdispersioncompen- andthereforefollowsEq.5. sator, ADC) on May 12th 2010. Results of the FWHM extracted alongthesmallandlargeaxisarepresentedinFig.5(right)where theairmass isover-plotted. Resultsshow that A1 does differenti- atetheelongatedaxis,andtheratiobetweenbothaxisfollowsthe 3.2.3 Imagingwavelength evolutionoftheairmass.Thedifferencebetweenthetwoaxiscan beaslargeas0.3′′ whichissubstantial.Theabilitytodistinguish ToanalyzehowtheAOSHimagingwavelengthimpactstheestima- smallandlargeaxisoftheFWHMisthereforemandatory.Wenote tionoftheseeing,wegenerateAOSHimagesforvariousimaging thatA2,byassumingarotationallysymmetrictheoreticalspotPSF wavelengthcoveringthevisiblespectrumfrom400to800nm.Re- profile(Eq.7)doesnotallowtodifferentiatethesetwoorientations. sultsarepresentedinFig.4(right)andindicatethataccurateknowl- edgeoftheSHimagingwavelengthiscritical.Forallwavelengths, A1responseisconstantlysmoothandcanthereforebeefficiently 3.2.7 DetectorPSF calibrated. A1response alwaysasymptotically converges towards Eq.5(L =22m),whereweremindthereaderthatr iswavelength Thediffusionofchargesinthedetectormaterialbeforetheyareal- 0 0 dependent.Theshorterthewavelength,thefastertheconvergence locatedtoonepixelisobservableasanartificialenlargementofthe to Eq. 5. This behavior was already reported in Martinezetal., PSF.Inmostcases,thespatialresponseofthedetectorisnottriv- (2010a),whereweexaminedthevalidityofEq.5withwavelength ialtodetermine.Figure6(left)presentstheimpactofthedetector inthecontext oftelescope images. Asnoticed inSect.3.2.1, and PSFonthemeasuredFWHMinthecaseof1.0′′seeing.Wefound generalizedhereforallwavelength,bellow0.6′′ theimpactofthe thatthedetectorPSFdoesenlargetheAOSHspotFWHMandthat AOSHpixel scaleisobservable. The reliabilityof seeingestima- theeffectcanbesignificant;itstartstobesubstantialfrom1pixel, tionfails at very good seeing conditions when seeing < 2× pixel whichislargerthanwhatisusuallyencounteredinscientificdetec- scale(here0.61′′). tors,inparticularstheonesattheVLT. (cid:13)c 2011RAS,MNRAS000,1–?? 6 P.Martinezet al. Figure5.Left:ImpactoftheAOSHspotsampling.Right:Impactoftheuncorrectedatmosphericdispersionontheseeingestimation(realdata). Figure6.Top:ImpactofthedetectorPSFontheseeingestimation.Bottom:Impactofthesignal-to-noise(RON=15ADUs)ontheseeingestimation. 3.2.8 Signal-to-noise takingintoaccount someof thecriticalparametersstudiedinthe previoussections.Accountingforthemedianouterscalevalueof AttheVLTtheread-out-noise(RON)leveloftheAOSHisabove Paranal(22m, Dali,etal.2010),theunder-samplingoftheAOSH 15 ADUs, while typical signal is about 20000 ADUs (per sub- attheVLT,andtheimagingwavelength,wefoundthatthefollow- aperture).Infigure6(right)wepresentthemeasuredFWHMinthe ing equation provides accurate seeing estimate from A2 FWHM caseof1.0′′seeingasafunctionofthesignallevel(inADUs)fora measurements: RONof15ADUs.Itisshownthatpoorsignal-to-noise(SNR)ratio imageenlargestheFWHMwhichisevidentforsignallowerthan ǫ =1.18×(FWHM1.84−0.15)1/2 (9) 10000ADUs,whileforsignalhigherthan10000ADUstheFWHM 0 measurements areroughly stable.Thestandard signal ADUlevel Fromthe sensitivityanalysis of A1(likewiseA2) tovarious obtainedattheVLTisthereforehighenoughtoavoidanyimpact parameters,weproposetodrawhereaclassificationofthecritical ontheFWHMestimation,althoughitcanbecalibratedotherwise parameters associated with an error budget. Based on the previ- knowingtheflux. oussystematicexaminationofallparametersimpactontheseeing estimation, we can conclude that L , λ, and the detector PSFare 0 themajorparameterstoconsider.Allotherparameterscanbeex- 4 APPLICATIONTOTHEVLTAOSHDATABASE cludedfromtheerror budget, beingeither withnegligibleimpact (fieldstabilization,SNR),withaknownandconstantvalueandthus 4.1 Correctionlawanderrorbudget calibrated (the spot sampling), or apart of the algorithm analysis Torelateoursimulationstorealsituation,were-analyzedtheVLT (atmospheric dispersion). TheParanal median value for the outer AOSHdatabaseobtained over thepast year.At theVLT,FWHM scaleis22m. Fortheerror budget ofthistermweconsider the± estimatesarerecordedasdiagnosticinformationsincethecommis- onesigmadeviationaroundthemedianvalue22m(11mand42m). sioningofthetelescope,whiletheA2algorithmisusedsinceMay AttheVLT,thebandwidthofthewavefrontsensorpathiscentered 2010.Asshownintheprevioussections,A2(similarlyA1)requires around550nminaverage.Asitcanvarywiththeguidestartype, tobecalibrated.FromFig.2itisstraightforwardtofitthedataof we consider a central wavelength of 550 nm ± 50nm. Hence we A2,andtoderiveacorrectionlawtotransformFWHMintoseeing assumehereadeviationbetween500and600nm.Forthedetector (cid:13)c 2011RAS,MNRAS000,1–?? Seeing estimationfromShack-Hartmannimages 7 PSFterm,sincethevalueisunknownattheVLT,weconsiderthat itisconfinedbetweenourreferenceandideal0valueand1pixel. Wefoundthattheerrorterms(σ)canbeexpressedas: σ =0.033×ǫ , (10) L0 0 σ =−0.009+0.096×ǫ (11) λ 0 σ =0.011×ǫ (12) detector 0 Assumingthatalltermsareindependent,wecanthereforewritethe errorbudgetofEq.9suchas: σ2 =σ2 +σ2+σ2 (13) ǫ0 L0 λ detector WenotethatforA2,bycontrastwithA1,anadditionaltermshould be considered: σ , standing for the atmospheric dispersion im- AD pact. Fromthis budget error, we can estimatethat all these inde- Figure7.SimultaneousseeingestimationwithFORS2andtheVLTAOSH pendenterrorsourcesaffecttheseeingderivedfromAOSHimages database,whileAOSHdataarecorrectedbyEq.9(bluedots),andleftun- at∼10%level.Ideally,adrasticreductionofthiserrorlevelispos- corrected (reddots).FORS2dataarecorrected byEq.5(L0).Bestfitof siblethroughsimultaneousandinstantaneousmeasurementof L , each setofdata is over-plotted (full redand blue lines), while theblack 0 fulllinerepresentsthereference,i.e.,theidealperfectmatchofFORS2and andaccurateknowledgeoftheguidestartype. AOSHseeingestimates. 4.2 ApplicationtotheVLTdatabase described by a Gaussian, and thus the calculation of the FWHM WeappliedEq.9retroactivelyontheVLTAOSHdatabaseobtained based onaGaussian fitisnot accurate. Thistypically induces an at UT4. Inparticular, weuse aset of 6500 simultaneous FWHM over-estimationoftheseeingat∼10%level. measurements obtained since May 2010 with the AOSH (using WeinformthereaderthatEq.9canbeusedontheVLTAOSH A2)andtheFORS2instrumentimages.Weremindthereaderthat database,beingtemporallyvalidfromMay2010uptonow.From FWHM estimation on long-exposure PSF from any scientific in- thecommissioningoftheVLTtoMay2010,anothercorrectionlaw strumentfollowsEq.5.WenotethatFORS2datamightbebiased mustbederivedsinceanotheralgorithmwasinuse.Inaddition,in byseveralparameters,amongofthemthetelescopefieldstabiliza- thefuture, A1should replaceA2at theVLT,and thusEq. 9will tion, and the accuracy of the FWHM extraction which is based requiretobere-adaptedaccordingly. ontheSExtractorsoftware(SourceExtractor,Bertin,etal.1996). Briefly,SExtractorisrunonthereducedFORS2images,andstars areidentifiedbasedonSextractorparameters,whiletheirFWHMs 5 CONCLUSION aremeasuredbytheprogramthroughtheuseofaGaussianfitap- plied on the data. The FWHM is afterwards extracted from the ActiveOpticsShack-Hartmann(AOSH)sensoroffersanadvanta- estimated Gaussian profile. The examination of the reliability of geouspossibilitytoestimatetheseeingatthefocusofatelescope: FORS2 data is beyond the scope of this paper, and therefore the (1/) it delivers long exposure PSFs, (2/) it is not affected by any comparison between AOSHand FORS2datamust be here, care- observationalbias(continuousreal-timeseeingestimation)bycon- fullyconsidered. trasttoscientificinstruments,(3/)weshowthatitisnotsensitiveto The correction to apply to the data is carried out as follow: thetelescopefieldstabilization. (1)FORS2FWHMdataarecorrectedbyEq.5assumingL =22m Thecomparisonofthetwoproposedalgorithmsgaveadvan- 0 (Paranalmedianvalue),whileA2FWHMareleftuncorrected by tagetotheoneproposedbyTokovininetal.,(2007)whichisbased Eq.9,(2)FORS2FWHMdataarecorrectedbyEq.5(L =22m)and on the theoretical OTF expression of the long-exposure PSF. Al- 0 A2FWHMdataarecorrectedbyEq.9.ResultsareshowninFig.7, thoughPSF-basedandOTF-basedalgorithmsexhibitsimilargen- wherethereddotscorrespondto(1)andthebluedotsto(2).Fig- eralbehavior,wefoundthatA1providesasmootherresponsethan ure7demonstratesthatFORS2correctionfor L andAOSHcor- A2totheseeingandbetteraccountforthesub-aperturediffraction, 0 rectionwithEq.9bring seeingcorrespondence inabetter agree- andatmosphericdispersion. ment. This is obviously expected as both FORS2 and AOSH de- We show that the estimation of the seeing from AOSH im- liver FWHMestimateat thesamelocation: the focusof the UT4 ages is sensitive to several parameters but can be calibrated. We telescope. This result further confirm the reliabilityof seeing ex- establish that even considering the small size of the AOSH sub- tractionfromAOSHdata. apertures (∼30cm), it does depend on the turbulence outer scale The power-laws of both set of data are provided in the leg- L andthereforefollowsEq.5.WeshowthatAOSHcanbeused 0 endofFig.7andareover-plottedforthesakeofclarity.Whenthe tobuildstatisticsusingmedianvalueof L ,inareal-timefashion 0 AOSHdataarecorrectedby Eq.9,itisobservable thattheslope but relying on median L value, or requiring instantaneous mea- 0 ofthepower-lawthroughthedataislinearandequal tounity, by surement of L . We note that in this context several independent 0 contrast to the situation where AOSH data are left uncorrected. campaigns have converged to the median value of L of 22 m at 0 Onlyaconstantandhomogeneousover-estimationofFORS2see- Paranal(e.g.,Dali,etal.2010). ingremains.Suchanoverestimationreflectsthepresenceofabias, The VLT AOSH database available since the commission- which likelyfindsitsorigininthe FWHMestimation carriedout ingofthetelescopedoes notprovide seeinginformationbut spot bySExtractor.Forinstance,long-exposurePSFprofilescannotbe FWHMs.Inthiscontext,Eq.9isrequiredtoderivetheseeingin- (cid:13)c 2011RAS,MNRAS000,1–?? 8 P.Martinezet al. formation.Weremindthereader,thatEq.9istemporallyvaliduntil Dalietal.,2010,A&A,524,A73+ May2010.Withtheseconsiderationsinmind,there-analysisofthe Fried,D.L.,1966,JournaloftheOpticalSocietyofAmerica,56, pastyearsoftheVLTAOSHdatabasedemonstratesaseeingcor- 1372+ respondence in better agreement between AOSH and the FORS2 Goodman,J.W.,1985,StatisticalOpticsbyJosephW.Goddman imager.Thisresultfurtherconfirmsthereliabilityofseeingextrac- NewYork,NY:JohnWileyandSons,1985 tionfromAOSHimages. KornilovV.G.andTokovinin,A.A.,Measurementoftheturbu- Finally,thequalificationandcalibrationofthealgorithmA1 lenceinthefreeatmosphere above Mt.Maoverset, Astronomy are nearly completed and clear the path to its operational imple- Reports mentationattheVLTforthreemonthsoftestperiodstartinginfall Martinez,P.,Kolb,J.,Tokovinin,A.,andSarazin,M.,2010,A&A, 2011.Finally,wenotethatmoreemphasisisgiventouseclosed- 516,A90+ loop real-time AO instruments data in the near future to get the Martinez,P.,Kolb,J.,Sarazin,M.,andTokovinin,A.,2010,The estimateoftheseeingatthecriticallocationofthetelescopefocus. Messenger,141,5-8 Noethe,L.,Sarazin,M.,2006,ESOinternaldocument Robert,C.,Voyez,J.,Ve´drenne,N.,andMugnier,L.,2011,Pro- ACKNOWLEDGMENTS ceedinginComprehensivecharacterizationofastronomicalsites Roddier, F., 1981, Progress in optics. Volume 19. Amsterdam, The activity outlined in the paper was supported by the Euro- North-HollandPublishingCo.,1981,p.281-376 peanCommission,SeventhFrameworkProgramme(FP7),Capaci- Sarazin,M.,andRoddier,F.,1990,A&A,227,294-300 tiesSpecificProgramme,ResearchInfrastructures;specificallythe Tokovinin,2002,PASP,114,1156-1166 FP7, Preparing for the construction of the European Extremely Tokovinin,A.,Sarazin,M.,andSmette,A.,2007,MNRAS,378, LargeTelescopeGrantAgreement,ContractnumberINFRA-2007- 701-708 2.2.1.28.WeacknowledgePhilippeDuhouxfromESOforhishelp Tatarskii, 1961, V.I. Wave propagation in a turbulent medium, withtheVLTcontrolsoftware. DoverPubl.,Inc.,NewYork Ziad,A.,Conan,R.,Tokovinin,A.,Martin,F.,andBorgnino,J., 2000,AppliedOptics,39,5415-5425 REFERENCES Appenzelleretal.,1998,TheMessenger,94,1-6 Bertinetal.,1996,A&AS,117,393-404 (cid:13)c 2011RAS,MNRAS000,1–??

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.