ebook img

Active Galactic Nuclei in the mid-IR. Evolution and Contribution to the Cosmic Infrared Background PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Active Galactic Nuclei in the mid-IR. Evolution and Contribution to the Cosmic Infrared Background

Astronomy&Astrophysicsmanuscriptno.matute06˙15mu˙AGNLF (cid:13)c ESO2008 February5,2008 Active Galactic Nuclei in the mid-IR ⋆ Evolution and Contribution to the Cosmic Infrared Background 6 0 0 I.Matute1,2,F.LaFranca2,F.Pozzi3,4,C.Gruppioni4,C.Lari5,G.Zamorani4 2 n 1 Max-PlanckInstitutfu¨rextraterrestrischePhysik(MPE),Giessenbachstraβe,Postfach1312,D-85741Garching,Germany a J e-mail:[email protected] 2 DipartimentodiFisica,Universita`degliStudi“RomaTre”,ViadellaVascaNavale84,I-00146Roma,Italy 6 1 e-mail:[email protected] 3 DipartimentodiAstronomia,Universita`diBologna,ViaRanzani1,I-40127Bologna,Italy 1 4 INAF,OsservatorioAstronomicodiBologna,ViaRanzani1,I-40127Bologna,Italy v 5 INAF,IstitutodiRadioastronomia(IRA),ViaGobetti101,I-40129Bologna,Italy 5 5 ReceivedJune28,2005;acceptedDecember30,2005 3 1 ABSTRACT 0 6 0 Aims.Westudytheevolutionoftheluminosityfunction(LF)oftype-1andtype-2ActiveGalacticNuclei(AGN)inthemid-infrared,andthen / derivethecontributionoftheAGNtotheCosmicInfraRedBackground(CIRB)andtheexpectedsourcecountstobeobservedbySpitzerat h 24µm. p Methods.Weusedasampleoftype-1andtype-2AGNselectedat15µm(ISO)and12µm(IRAS),andclassifiedonthebasisoftheiroptical - o spectra.Localspectraltemplatesoftype-1andtype-2AGNhavebeenusedtoderivetheintrinsic15µmluminosities.Weadoptedanevolving r smoothtwo-powerlawshapeoftheLF,whoseparametershavebeenderivedusinganun-binnedmaximumlikelihoodmethod. t s Results.WefindthattheLFoftype-1AGNiscompatiblewithapureluminosityevolution(L(z) = L(0)(1+z)kL)modelwherekL ∼2.9.A a smallflatteningof thefaint (L < L∗ ) slopeof theLFwithincreasingredshift isfavouredbythedata. Asimilar evolutionary scenariois : 15 15 v foundforthetype-2populationwitharatekL rangingfrom∼1.8to2.6,dependingsignificantlyontheadoptedmid-infraredspectralenergy i distribution. Alsofor type-2 AGN aflatteningof theLF withincreasing redshift issuggested by thedata, possibly caused bythe lossof a X fractionoftype-2AGNhiddenwithintheopticallyclassifiedstarburstandnormalgalaxies.Thetype-1AGNcontributiontotheCIRBat15µm r is(4.2–12.1)×10−11 Wm−2sr−1,whilethetype-2AGNcontributionis(5.5–11.0)×10−11 Wm−2sr−1.WeexpectthatSpitzerwillobserve,down a toafluxlimitofS =0.01mJy,adensityof∼1200deg−2type-1and∼1000deg−2type-2opticallyclassifiedAGN. 24µm Conclusions.AGNevolveinthemid-infraredwitharatesimilartotheonesfoundintheopticalandX–raysbands.Thederivedtotalcontri- butionoftheAGNtotheCIRB(4-10%)andSpitzercountsshouldbeconsideredaslowerlimits,becauseofapossiblelossoftype-2sources causedbytheopticalclassification. Keywords.cosmology:observations–infrared:galaxies–galaxies:active–surveys–galaxies:evolution 1. Introduction of the luminosity (the luminosity function, LF hereafter) can providefundamentalcluestoexplainthepresentdayuniverse ActiveGalacticNucleus(AGNhereafter)areexpectedtohave (e.g.Ballandetal.2003;Mencietal.2004;Granatoetal.2004; playedanimportantroleintheformationandevolutionofthe DiMatteoetal.2005). galaxiesintheUniverse.Anexampleistheobservationofthe correlationbetweenthemassofthecentralblackholes(M ) The LF will not only provide informations on the demo- BH andthemassofthebulges(Magorrianetal.1998)ortheveloc- graphicsof AGN, butwill also place constraintson the phys- itydispersionofgasandstarsinthebulgesofgalaxies(M –σ ical model of AGN, the origin and accretion history into su- BH relation;Ferrarese&Merritt2000;Tremaineetal.2002).Thus, permassive black hole and the formation of structures in the themeasureofthehistoryofthedensityofAGNasafunction earlyuniverse.Moreover,themeasureoftheAGNLFoverthe whole spectral range will provide information on the relative ⋆ Data presented here are based on observations by the Infrared importanceofaccretionpowerintheoverallenergybudgetof Space Observatory (ISO). ISO is an ESA project with instruments theuniverse. funded by ESA member states (especially the PI countries: France, Germany,theNetherlandsandtheUnitedKingdom)andwiththepar- AGN have been historically classified into two groups ticipationofISASandNASA. (type-1 and type-2), dependingon the presence or absence in 2 Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR their optical spectra of broad emission lines (FWHM>1200 Shupeetal.1998)anddeepbutsmallISOfieldsintheHubble kms−1).TheunifiedmodelforAGNassumesthatthetwotypes DeepField North (HDFN;Ausseletal. 1999a,1999b),South of sources are intrinsically the same (Antonucci et al. 1993), (HDFS; Oliver et al. 2002) and the Canada-France Redshift andthattheobserveddifferencesintheopticalspectraareex- Survey(CFRS;Floresetal.1999)thatprovidedonlyahandful plainedbyanorientationeffect.Thepresenceofobscuringma- ofobjects. terial(torusor warped disc) aroundthe centralenergysource Therefore,duetothesmallnumberofhighredshiftobjects and its orientation respect to the observer could preventa di- available,theshapeandevolutionofthemid-IRLFoftheseob- rect view of the central region around the nuclei responsible jectsathighredshiftwaslargelyunknown.Onlyrecently,large forthebroadlineemissionobservedintheopticalband.AGN and highly complete 15µm spectroscopic samples, based on arethenclassifiedintwogroups:theun-obscured(type-1)and theEuropeanLargeAreaISOSurvey(ELAIShereafter;Oliver obscured(type-2)sourcesdependingwhethertheline-of-sight etal.2000),havebeenreleased(Rowan-Robinsonetal.2004; intersects or not the obscuringmaterial. However,nowdaysit LaFrancaetal.2004;FLF04hereafter).Basedontheanalysis seems clear that the orientation-dependentmodel is probably of the ISO observations in the ELAIS-S1 field, Matute et al. justa0th-orderapproximationtothetruenatureofAGN(e.g. (2002, M02 hereafter) derived the first estimate of the type-1 Bargeretal.2005;LaFrancaetal.2005). LF in the mid-IR (15µm) finding an evolution similar to the ThemajoreffortstounderstandtheevolutionofAGNhave ones observed in the optical (Croom et al. 2004) and X–rays beenhistoricallyconcentratedatopticalwavelengthsandinthe (e.g. Hasinger et al. 2005; La Franca et al. 2005). The evo- lastyearshaveproducedthelargestcompilationsofAGNfrom lution of the LF for normaland starburst galaxies detected at the Two Degree Field (2dF; Boyle et al. 2000; Croom et al. 15µminthesouthernELAISfields(S1&S2)hasbeenderived 2004) and the Sloan Digital Sky Survey (SDSS; York et al. anddiscussedbyPozzietal.(2004). 2000;Haoetal.2005).Howevertheopticalbandshaveproved Inthispaperweinvestigatetheseparateevolutionoftype- to be veryinefficientin the selection of obscuredsourcesand 1 and type-2AGN in the mid-IRandtheir contributionto the the assembly of unbiased samples of type-2 objects is diffi- CIRB using: a) the local IR population uncovered by IRAS, cult.Inthelastyearsmanynewwindowshavebeenopenedat b) deep observations from ISO fields and, c) the most recent variouswavelength bandsfor the observationof high redshift spectroscopic identifications of 15µm sources in the southern galaxiesandAGN:sub-mm(SCUBA),Infrared(IRAS,ISOand fields of the ELAIS Survey (Pozzi et al. 2003; FLF04)1. The Spitzer) andthe X–ray(ROSAT,XMM andChandra).Thanks AGNsampleusedinourworkisdescribedinsection2.Section to their smaller dependence on dust obscuration if compared 3introducesthegeneralmethodusedtoderivetheparameters to the optical surveys, the Infraredand the hard X–ray wave- oftheluminosityfunctionandpresentstheresults.Insection4 lengthshaveprovedtobemuchmoreefficientinthedetection wediscussourresultsandcomparethemwiththeLFsderived oftype-2sources. inthemid-IRbypreviousanalysisofmid-IRobservations.The X–ray observations have been so far consistent with contributiontotheCIRBandthepredictedcountsinthemid-IR population synthesis models based on the 0th-order unified Spitzerbandat24µm arecomputedanddiscussedinsections AGN scheme (e.g. Comastri et al. 1995) or its modifications 5and6.Section7summarisesthemainresults. (Pompilio et al. 2000; Gilli et al. 2001; Ueda et al. 2003; La AcosmologywithH = 75kms−1 Mpc−1 andΩ = 0.7, o λ Franca et al. 2005). The hard spectrum of the X–ray back- Ω =0.3wasadoptedfortheworkpresentedinthispaper. m groundisexplainedbyamixtureofabsorbedandunabsorbed AGN,evolvingwith cosmictime.Accordingtothesemodels, mostAGNspectrashouldbeheavilyobscuredasthelightpro- 2. Thesampleandsourceclassification ducedbyaccretionisabsorbedbygasanddust. The mid-IRselected AGN sample usedin thiswork hasbeen For this reason an important mid-infrared (4-40µm) ther- extractedfrom:(i)the15µmELAISfieldsS1andS2 (Lariet mal emission is expected from reprocessed radiation by gas al.2001;Pozzietal.2003),(ii)the15µmdeepISOsurveysin and dust grains directly heated by the central black hole the HDFN (Aussel et al. 1999a, 1999b), HDFS (Oliver et al. (e.g. Granato et al. 1997; Oliva et al. 1999; Nenkova et al. 2002)andCFRS(Floresetal.1999),(iii)thelocalIRAS12µm 2002). AGN could be in this case important contributors to sampleofRMS. the Cosmic Infrared Background (CIRB). Indeed, IRAS has The 15µm catalogue in the ELAIS S1 field has been re- observed strong mid-IR emission in all local (z < 0.1) AGN leased byLarietal. (2001).Itcoversan areaof∼4 deg2 cen- (Mileyetal.1985;deGrijpetal.1985;Neugebaueretal.1986; tred at α(2000) = 00h34m44.4s, δ(2000) = −43o28′12′′ and Sandersetal.1989).Completeandlargelyunbiasedsamplesof includes462 mid-IRsourcesdown to a flux limit of 0.5 mJy. AGNhavebeenproducedat12µm(Rush,Malkan&Spinoglio Mid-IR source countsbased on this catalogue have been pre- 1993,RMShereafter)and25µm(Shupeetal.1998)basedon sentedanddiscussedbyGruppionietal.(2002). IRASobservations.Thesesamplesprovideanimportantunder- The analysis presented here is restricted to the more reli- standingoftheinfraredemissionfromlocalgalaxiesandafirm ablesubsampleof406sourcesasdescribedbyFLF04.About basetocomparethepropertiesofgalaxiesinthelocaluniverse 80% of these sources have been optically identified on CCD with the high redshift populations uncoveredby ISO (z ≤ 1) exposuresdowntoR∼23,whilespectralclassificationhasbeen andmostrecentlybySpitzer(z≤2). StatisticalstudiesofAGNinthemid-IRhavebeenbasedon 1 Data and related papers about the ELAIS southern survey are largebutlocalsamplesfromtheIRASobservations(e.g.RMS, availableat:http://www.fis.uniroma3.it/∼ELAIS S Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR 3 when available, depending on the redshift of the source (e.g. log([OIII]/Hβ)>0.5andlog([NII]/Hα)>-0.4). In total, the southern ELAIS (S1+S2) AGN sample in- cludes27(25+2)type-1and25(23+2)type-2AGNrepresent- ing∼16%(52/320)oftheidentifiedinfraredsourcesand∼24% (52/221) of the extragalactic population. Their distribution in theredshift–R-magnitudespaceisshowninFig.1.Theplotted linesrepresentalinearfit(±1σ)tothedata(dottedfortype-1 AGN and dashed for type-2). Type-1 sources are detected up toz∼3andshowaquasiredshift-independentandnarrowop- tical magnitudedistribution(R = 18.76±1.01).On the other hand, type-2 sources show a larger spread of optical magni- tudes(R =18.45±1.62)andarathersteepdependenceonthe redshiftuptoz∼1. Fig.1. DistributionofELAIS-S1type-1and-2AGNinthez−R-magnitudeplane. Bestfitlinearsolution(±1σ)inthelog(z)-Rspaceareshownasdottedlinesfortype-1 Constraintsonthefainterpopulationareprovidedbydeep AGNandasdashedlinesfortype-2AGN.TheR-magnitudeandredshiftdistributionsare shownintheleftandbottompanelsrespectively. 15µmobservationsintheHDFN(Ausseletal.1999a,1999b), HDFS (Oliver et al. 2002) and in the 1452+52 field of the CFRS(Floresetal.1999).Thesefieldshaveafluxlimitabout obtained for 90% of the optically identified sample. As dis- anorderofmagnitudedeeper(S ≃0.1mJy)thantheELAIS- cussedbyFLF04,duetoadifferentmid-IRfluxlimitcoverage 15 Sfieldsbutwith skycoverages100to500timessmaller. The oftheELAIS-S1field,thetotalareahasbeendividedintotwo multiwavelengthfollow-upinthesefieldshasidentifiedasmall regions: the central and deepest region of S1 (S1-5) reaching fractionofsourcesasAGN(bothtype-1andtype-2). mid-IRfluxes(S hereafter)of0.5mJy,andtheouterregion 15 (S1-rest) with a 0.9 mJy flux limit. The S1-5 area is spectro- scopically complete at the 97% level down to R=21.6, while In the HDFN, 41 15µm sources have been detected over S1-rest completenessreaches the 98% level down to R=20.5. an area of 21.5arcmin2. The sample is complete downto 0.1 In total 116 sources (29% of the total mid-IR sample) do not mJy (Aussel et al. 1999a).4 of these sources, with fluxes be- have a spectroscopic identification due to incompleteness of tween0.1and0.45mJy,arefoundtobeAGNbyAlexanderet thefollow-uportothelackofopticalcounterpartbrighterthan al.(2002),equallydividedbetweenthetwoclasses(Alexander R=23.Adetaileddescriptionoftheopticalidentification,spec- et al., privatecommunication).In the HDFS we use the AGN troscopicclassification,size andcompletenessfunctionofthe identified by Franceschini et al. (2003) from a sample of 59 differentareasusedintheELAIS-S1samplearepresentedand ISOCAMsourceswithS15≥0.1mJyselectedoveranareaof discussedbyFLF04. 19.6 arcmin2. They have detected 2 secure AGN, one type-1 The S2 field is a smaller and deeper area centred at (S15 = 0.288mJy)andonetype-2(S15 = 0.518mJy).Theob- α(2000) = 05h02m24.5s, δ(2000) = −30o36′00′′ covering ∼ servations in the CFRS 1452+52 field cover an area of ∼100 0.12deg2.Thisregionincludes43sourceswithS/N>5downto arcmin2.41sourceswithS15 ≥0.35mJyandwithS/N≥4have S =0.4mJy(Pozzietal.2003;Rowan-Robinsonetal.2004). been selected (Flores et al. 1999). The spectroscopic follow- 15 PhotometryinthewholefieldisavailableintheU,B,IandK′ uphasidentifiedonetype-1(S15=0.459mJy)andonetype-2 bands down to 21.0, 24.5, 22.0 and 18.75 respectively (Vega (S15=1.653mJy)source.Intheabovementionedfields,afrac- magnitudes). 39 infrared sources have a counterpart in the I tionofthetype-2sourceswerenotclassifiedaccordingtotheir band. 22 of them have a spectroscopic identification, while 8 opticalspectrabutonthebasisoftheshapeoftheirmultiwave- sources are classified as stars since they are associated with lengthspectralenergydistribution(SED).Forthisreasononly bright (I<14) point-like sources in the optical catalogue. To theselectedtype-1populationhasbeenusedinouranalysis. avoid large incompletenessdue to the optical follow-up,only sourceswithopticalcounterpartsbrighterthanI=20.6werese- Finally,wehavecombinedtheISOCAMdatawiththelocal lected.Downtothisopticallimit,thesampleconsideredinS2 IRASsampleofAGNfromRMS.TheRMSCatalogueisahigh isthencompleteatthe95%spectroscopiclevelforsourceswith galactic latitude(|b|≥25o), colourselected (S /S ) and 60µm 12µm S >0.7mJy. flux limited (S >0.22Jy) sample extractedfromthe IRAS 15 12µm Classification for AGN dominated sources in the ELAIS 12µmFaintSourceCatalog,Version2(Moshiretal.1991).To fields was based on their optical spectral signatures. Sources avoid completeness uncertainties in the mid-IR sample, only showingbroademissionlineprofiles(restframeFWHM>1200 sourceswithS ≥300mJywereselected(seeRMS).Into- 12µm kms−1) were classified as type-1. Type-2 sources were se- tal 41type-1and50 type-2sourcesarefoundwithinthis flux lected following classic diagnostic diagrams (e.g. Tresse et range.Thephotometricandspectroscopicfollow-upoftheop- al. 1996; Osterbrock 1989; Veilleux & Osterbrock 1987) ticalcounterpartsisconsideredtobe∼100%completeforthese that included one or more of the following line ratios: sourcesandhasbeenusedinouranalysisasrepresentativeof [NII]/Hα, SII/(Hα+[NII]), OI/Hα, [OIII]/Hβ and [OII]/Hβ themid-IRselectedpopulationofAGNinthelocaluniverse. 4 Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR Table 1. Mean redshift and Luminosity (±1σ) of the mid-IR Unlike type-1 sources, the mid-IR SED of type-2 objects samples variesgreatly.Theyrangefromstarburst-likegalaxiesSEDs,as inthecaseofCircinus(Sturmetal.2000),showingaweakcon- Sample IRAS ISO tinuum, prominentemission from PAH moleculesand a deep <z> <logL15 >(a) <z> <logL15> silicateabsorptionfeatureat∼10µm,tomorepower-likeSEDs Type-1 0.03±0.02 43.87±0.87 1.23±0.71 45.22±0.78 dominatedbyhotdustdirectlyheatedbytheactivenucleus,as Type-2 0.02±0.01 43.66±0.68 0.28±0.20 43.90±0.69 inNGC1068(Sturmetal.2000).Asaconsequence,themid- IRSEDofNGC1068andCircinusgalaxies(Fig.2)wereused (a) 12µmluminositiesfromRMShavebeenconvertedto15µmusingtheadoptedSED. InparticulartheCircinusSEDwasadoptedfortype-2AGN(see§3.1). asrepresentativeoftwoextremecasesofobscuredAGNinthe mid-IR. In order to derive the optical k-correction for type-2 sources,anaveragespectrumwasproducedintheopticalband (3500-7000Å)usingourbesttype-2spectra(Fig.5inFLF04). InFigure3weshowthedistributionsintheL −zplaneof 15 thetotalsampleusedinouranalysis,whileTable1summarises themeanredshiftsandmid-IRluminosities,andcorresponding 1σdispersion,measuredforthelocal(IRAS)andhighredshift (ISO)sources. Fig.2. Adoptedmid-IRspectralenergydistributions(SEDs)fortype-2sources(top panel)andthecorrespondingk-correctionsasafunctionofredshiftcomputedforthe ISOCAM-LW3filter(bottompanel). Fig.3. DistributionintheL15−zspaceofthetotalsampleofmid-IRtype-1and2 AGN.Themid-IRluminosityfortype-2sourceshasbeencomputedapplyingtheCircinus k-correction(seetext,§3.1).Thedotted,dashedanddot-dashedlinesrepresenttheflux limitsat0.1,1.0and300mJyrespectively. 3. TheEvolutionofAGN 3.1.TheMethod The adopted shape of the luminosity function (LF) is a smoothtwo-powerlawoftheform: In order to compare local sources with a higher redshift se- lectedpopulationandto probechangeswith cosmictime itis dΦ(L ,z) Φ∗ 15 = (1) necessary to compare their intrinsic physical properties. Our dlogL (L /L∗ )α(z)+(L /L∗ )β 15 15 15 15 15 sample has been selected in the mid-IR and identified in the opticalband,thereforerest-frameluminosities, in the form of where we have introduced a dependence on z in order to νL ,at15µm(L )andintheR-band(L )werecomputedus- allowachangeintheslope(α)ofthefaintendoftheluminosity ν 15 R ingwellknownSEDsfortype-1and2sources. function.Wehaveassumedaluminosityevolutionoftheform: The compilation of Elvis et al. (1994) of 47 QSO, in the range of 1–20µm, was used as representative of the mid-IR L15(z)=(LL1155((0zc)u(t1)+z)kL ffoorrzz>≤zzccuutt (2) emissionforthetype-1population.ThiscompositeSEDagrees very well with spectroscopic observations of type-1 sources wherez istheredshiftcutbeyondwhichtheluminosityfunc- cut performedbyISOinthemid-IR(Claveletal.2000;Spoonet tionisassumedtoremainconstant. al. 2002),showinga strongpower-likecontinuum,veryweak Theparametersforthe luminosityfunctionandthe evolu- or no PAH emission bands and no evidence of the 10µm sil- tion have been derived using an un-binned, maximum likeli- icate absorptionfeature.Optical luminosities for type-1AGN hood method (Marshall et al. 1983), as described by Matute were computedusing the R-bandk-correctionby Natali et al. etal.(2002).Thespectro-photometricfollow-upoftheELAIS (1998),whichtakesintoaccountthelargeeffectofbroadlines southernfieldswasnotdeepenoughtoprovideanidentification enteringandleavingthepassband. and a classification for all the sources detected in the mid-IR Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR 5 sample. A factor depending on redshift and mid-IR luminos- form:α(z) = α exp(−α ∗z)+α . Ajustificationforthis 1 2 3 ity was therefore introduced in order to take into account the formisgiveninthefollowingparagraphs. fractionof objectsnotidentified,dueto the lack ofan optical - Afixedvalueforz equalto2.0inourparameterisationof cut counterpartor to incompletenessof the spectroscopic follow- theLF. Ourrelativelysmallnumberofsources,especially up. We will refer to this factor as the optical−completeness athighz,doesnotallowtosamplecorrectlytheexistenceof factor,Θ(z,L). It representsthe probabilitythat a source with thisredshiftcutoff.Wehavethereforeassumedabehaviour agivenredshiftandmid-IRluminosityL hasanapparentR- inthemid-IRsimilartowhatisalreadyknownfortheevo- 15 bandmagnitudewithinthespectroscopiclimitsofthesamples, lutionofAGN in the optical(Boyleet al. 2000,Croomet and was derived taking into account both the average L /L al.2004)andX–ray(Miyajietal.2000,2001;LaFrancaet 15 R ratio of the sources and its observed natural spread. For any al.2005;Hasingeretal.2005),suggestingvaluesforz in cut given mid-IR luminosity L , this probability has been com- therange1.7-2.5. 15 putedassumingagaussiandistributionoflog(L /L )centred - A universe volume between z=0 and z=4, while the 15 R atitsmeanvalueandwithasigmaequaltotheobservednatu- space density was integrated in the luminosity interval ralspreadof the L /L relation(see nextsectionsfordiscus- logL =[42,47]. 15 R 15 sionsontheadoptedmeanvaluesandspreadsoflog(L /L )) 15 R 2.Then,thefunctiontobeminimisedcanbewrittenas: In total, 72 (27 ELAIS + 41 RMS + 4 ISO-Deep) type-1 AGNwereusedtoderivetheLF.Thebestsolutionsfoundfor N S=−2 ln[Φ(z,L)]+2 Φ(z,L)Ω(z,L)Θ(z,L)dVdzdL (3) each parameter(±1σconfidencelevels) andthe 2D-KSprob- i i Xi=1 ZZ dz abilities are presentedin Table 2 in the rows labeled ”A” and ”B”forthefixedandvariablefaintslopemodelsrespectively. where Ω(z,L) is the effective area coveredby each subsample InFigure4weshowtheobservedspacedensitydistribution at 15µm, L=L and the index i runs over all the objects of 15 and the best fit models in two redshift intervals: z = [0,0.2], a given class. For the ELAIS-S1 sources the area coverageis where the IRAS sources dominate, and z = [0.2,2.2],mainly presentedas a functionof flux by FLF04. Area coveragesfor populatedby ISO sources.The largeintervalat highredshifts thedeeperISOfields(HDF-N,-SandCFRS)aredescribedin (z = [0.2,2.2]) was chosen only for representation purposes, theprevioussection.TheareasampledbyRMSisconsidered toassureasignificantnumberofobservedsourcesineachlu- equalto 0forS < 300mJyandequalto22191.80deg2 for 12 minosity bin. In order to correct for evolution within the red- S ≥300mJy(seeRMSfordetails).TherepresentativeSEDs 12 shift intervals, the observedspace density distribution is plot- wereusedtoconverttheRMS12µmfluxesinto15µmfluxes. ted following La Franca et al. (1997). The expected number Confidenceregionsforeachparameterhavebeenobtained of sources given by the model in each bin (Nmodel) is com- bycomputing∆S(=∆χ2)atanumberofvaluesaroundthebest puted and compared to the observed number of AGN in the parameter(S ), while allowingthe otherparametersto float min bin (Ndata). The ratio Ndata/Nmodel for each bin is then multi- (see Lampton, Margon & Bowyer 1976). A 68% confidence plied for the value of the LF at the correspondingcentral lu- region for any single parameter corresponds to ∆S = 1. The minosity and redshift value of the bin. The plotted error bars goodness of the fit has been verified using the bidimensional correspondto the 1σPoisson distributionand were estimated Kolmogorov-Smirnovtest(2D-KShereafter)intheL –zspace 15 followingGehrels(1986).Spacedensityupperlimitsaregiven (seePeacock1983;Fasano&Franceschini1987).Thenormal- wheresourcesareexpectedbythemodelbutnotobserved.The isationfactorΦ∗ isdeterminedinsuchawaytoreproducethe 1σ dispersion for the LF was computed according to the 1σ observedtotalnumberofsources(ISO+IRAS). uncertaintiesofitsparameters,andrepresentedasalight-grey shadedareainFig.4. 3.2.TheEvolutionoftype-1AGN Besidethenaturalstatisticaluncertaintiesduetothelimited numberofsourcesusedinouranalysis,ourfittingtechniqueis For type-1 sources, the opticalcompletenessfactor,Θ(z,L ), 15 affected by possible errors due the assumed average value of has been estimated using the mean value log(L /L )=0.23 15 R the L /L ratio used to correct for the spectroscopic incom- with a 1σ dispersion of 0.25 (from the sample of Elvis et 15 R pletenessofthesamples.Inorderto estimatetheseuncertain- al. 1994). These values are in rough agreement with the de- tieswehaverecomputedtheLFbestfitsolutionsassumingtwo rivedvaluefortheIRASlocalsub-sampleoftype-1AGNfrom extremecasesforthelog(L /L )ratio.Inparticular,wehave Spinoglioetal.(1995;0.05witha1σspreadof0.13).Thisra- 15 R usedasaveragevalueoflog(L /L ) ourbestestimate(0.23) tioanditsspreadshowsnosignificantdependenceonL over 15 R 15 plus or minus the observed 1σ dispersion (0.25). Even under more than 4 decades of mid-IR luminosity and we assumed these extremeassumptions,the parametersofthe LFresultto themtobeconstantwithredshift. be within the errors quoted in Table 2. The dark-greyshaded In order to find the best fit solutions to the LF we have areasinbothpanelsofFig.4showthecorresponding1σrange considered: of uncertainty introducedin the estimate of the space density - 2 different behaviours for the faint slope of the LF: a) a oftype-1AGN.Asitisclearlyseeninthefigure,thestatistical fixedvalue(α=α(0))and,b)adependenceofαonzofthe errorsduetothelimitednumberofsourcesusedinouranalysis 2 Asimilarapproachwasadoptedinthepreviousestimatesofthe dominateovertheuncertaintiesduetotheassumptionsonthe MIRtype-1AGNLFbyMatuteetal.(2002),andoftheX-rayAGN averagevalueofthelog(L15/LR)ratio.Forexample,theuncer- LFbyLaFrancaetal.(2002,2005) taintyintroducedintheestimateddensityoftype-1AGNbythe 6 Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR Table2.ParametervaluesofthefitoftheLuminosityFunction Model α α α β logL∗ a k z logΦ∗b CIRB(%)c P 1 2 3 15 L cut 2DKS (I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI) Type-1AGN A 0.00(fixed) 0.00(fixed) 1.08−+00..1019 2.29−+00..1366 44.45−+00..0088 2.78−+00..1283 2.00 −5.78±0.03 12.1−+27..57(4.5−+12..09) 0.11 B 0.69+0.07 5.92+0.17 0.64+0.07 2.76+0.21 44.78+0.07 2.87+0.27 2.00 −6.26±0.03 4.2+1.1(1.6+0.3) 0.35 −0.08 −0.12 −0.11 −0.26 −0.06 −0.15 −1.0 −0.4 Type-2AGN(NGC1068SED) C 0.00(fixed) 0.00(fixed) 0.78−+00..1150 2.67−+00..3451 44.15−+00..2210 1.79−+00..5373 ... −4.77±0.03 9.2−+36..31(3.4−+11..62) 0.18 D 0.90+0.12 6.00∗∗ 0.00∗∗ 2.66+0.29 44.11+0.17 2.04+0.70 ... −4.69±0.03 5.5+2.6(2.0+1.0) 0.33 −0.14 −0.25 −0.16 −0.60 −1.5 −0.8 Type-2AGN(CircinusSED) E 0.00(fixed) 0.00(fixed) 0.76−+00..1143 2.73−+00..3432 44.15−+00..2204 2.50−+00..5505 ... −4.75±0.03 14.6−+58..14(5.4−+13..91) 0.16 F 0.87+0.12 6.00∗∗ 0.00∗∗ 2.68+0.26 44.10+0.13 2.55+0.52 ... −4.66±0.03 7.7+3.0(2.9+1.1) 0.49 −0.14 −0.24 −0.12 −0.54 −2.1 −0.8 aL∗15correspondstoνLνat15µmandisgiveninergs−1. bThenormalisation,logΦ∗,isgiveninMpc−3mag−1. cContributionνIνtotheCIRBat15µminunitsof10−11Wm−2sr−1.Inparenthesiswereportthe%oftheCIRBproducedbythefitgivenaCIRBvalueof2.7nWm−2sr−1. ∗∗Thevaluesoftheseparametersreachedthephysicallimitimposedinourminimisationprocess.Theseconstraintswereimposedtothemodelsinordertonotproduceunphysical solutionsathighredshiftduetothelowstatistics.Therefore,noerrorsarereportedfortheseparameters. amount (∼1σ), but systematically over 5 luminosity bins, the numberofthelowluminosity(L (z) < L∗ )andhighredshift 15 15 (z=1.2) type-1 AGN. This is the main reason why a depen- denceofthefaintslopeontheredshiftwasincluded.Theintro- ductionofthisdependencetranslatesintoaluminositydepen- dentluminosityevolution(LDLE) forthe faintpartof the LF (modelBinTable2).Inthiscase,abetteragreementbetween themodelandthedataisobtained(Fig.4,toppanel)asshown bytheincrementofthe2D-KSprobability(0.35vs.0.11). Themeasuredrateofluminosityevolution(k )resultstobe L ratherindependentfromtheadoptedrelationbetweenαandz. Thebestfitvalues,k ∼2.7−2.9,aresimilar,withintheerrors, L to those alreadyfoundforthese objectsin the opticalandX– ray wavelengths, where the evolution rate is between 2.5 and 3.5(LaFrancaetal.1997;Boyleetal.2000;Miyajietal.2000 &2001;Croometal.2004;LaFrancaetal.2005;Hasingeret al. 2005). Therefore,according to this analysis, no difference is found in the evolution of mid-IR selected type-1 AGN in comparisontotheonesselectedintheopticalandX–rays. Fig.4. Type-1AGNlocal(z=0.1,continuousline)andhighredshift(z=1.2,dash– The 15µm integral counts and the observed redshift dis- dottedline)bestfitstothe15µmLuminosityFunctionassumingaredshiftdependentfaint slope(Fit“B”,toppanel)andaPLEmodel(Fit“A”,bottompanel).Opencirclesrepresent tribution for type-1 AGN can now be comparedwith the pre- theobservedspacedensityofthelocalpopulation(dominatedmainlybyRMSsources) dictions derived from the best fit models. The results of this whilefilledcirclesrepresenttheobservedspacedensityofthehighredshiftpopulation (dominatedbyELAISsources).Poissonianerrorsat1σconfidencelevelareshown.The comparisonare presentedin theupperrightandleftpanelsof dark-greyshadedareas(quitenarrowandthusbarelyvisible)representtheuncertainty Figure5. The bottom panels show the corresponding relative introducedbytheassumptionsusedtoestimatetheopticalincompletenessofthesamples, whilethelight-greyshadedareascorrespondtothe1σerrorsofthebestfitparametersof errorsas derivedfrom the 1σ uncertaintieson the best fit pa- theLF(see§3.2). rametersoftheLF. The expected integral counts (Fig. 5, left) given by both assumedL /L relationis∼10%atL ∼ L∗ ,whilethestatis- models (dashed line for model “A” and continuous line for 15 R 15 15 ticaluncertaintyduetothelimitednumberofsourcesislarger model “B”) provide a good representation of the observed than 20%. For these reasons, in order to compute the errors data (shadedareas)downto ∼2mJy.Atfluxesbelow∼2 mJy over the parameters of the LF and any derived quantity (e.g. the variable slope model agrees better with the ELAIS data, integralcountsandredshiftdistributions),weneglectedtheun- whilethePLEmodelismorerepresentativeofthefainterpop- certainties related to the assumptions on the average value of ulation in the HDF and CFRS fields. At the faintest fluxes thelog(L /L )ratio. (S = 0.1 mJy) the variable slope model underpredicts the 15 R 15 We observethatalthoughtheoverallfitbythePLEmodel observedcountsby a factor ∼2. The uncertaintieson the pre- (model A in Table 2, Fig.4 bottom panel) is in reasonable dictedcountsatthisflux(∼20%)arenotlargeenoughtojustify agreement with the observed data, it overpredicts by a small theobserveddiscrepancy. Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR 7 Fig.5.Left)Mid-IRintegralcountsfortype-1AGN.ShadedareasshowtheRMSandELAISobservedcounts,whilesymbols(triangle,staranddiamonds)representtheISO-Deep surveys.Thethicksolidlinegivesthepredictedcountsfromthevariableslopefitmodel(“B”).Expectationsfromthefixedfaintslopemodel(“A”)areplottedasadashedline.All errorsintheobserveddistributionsarequotedatthe1σlevelandgivenbyPoissonstatistics.Thebottompanelshowthe1σrelativeerroronthepredictedcountsduetotheuncertainties onthebestfitparametersoftheLF(seetext).Linetypeshavethesamemeaningasintheabovepanel.Right)Redshiftdistributionfortype-1AGN.Thehistogramrepresentsthetotal numberofobservedsourcesineachredshiftinterval.ShadedregionsoutlinetheISOCAMcontribution,whiletheopenhistogramaccountsforthecontributionfromIRASsources. Thelinesarethepredictionsfromthebestfitmodel(“B”):thickdash-dottedforIRAS,thickdashedforISOpopulation,whilethecontinuousthicklinegivestheirsum.Theexpected distributionsforthe“A”modelareplottedasabovebutusingthinlines.Thebottompanelshowstherelativeerrorsofthepredictionsfortheentiremid-IRpopulation(IRAS+ISO)only. We also find an overall good agreement between the red- shownthatsucharelationexistsandfoundittobevalidforthe shift distribution of the observed data and the model predic- wholemid-IRpopulation(excludingtype-1sources)overmore tions(Fig.5,right).Thelargestdiscrepancybetweenthemod- than4decadesofmid-IRluminosity.Inordertoderivethisre- els occurs at the lowest redshift bin (z = [0,0.5]) where the lationship, optical identifications from RMS, ELAIS-S fields, fixedfaintslopemodel(thinlines)overpredictsthenumberof HDFNorth(Ausseletal.1999a,1999b)andSouth(Mannetal. sourcesobservedinthe ISOCAM fieldsbya factor∼3 (4ob- 2002;Franceschinietal.2003)wereused.Asopposedtotype- servedvs.∼12expected),whilethevariablefaintslopemodel 1 sources, the ratio (L /L ) has a dependence on L which 15 R 15 providesabetterrepresentationoftheobserveddistribution. canbeexpressedinthelinearform In summary, although the variable faint slope model pro- log(L /L )=0.47logL −5.02, vides a better overall fit to the LF and reproduces better 15 R 15 the z-distribution, it underestimates the faint mid-IR counts where luminosities are expressed in solar units (see FLF04, (S <0.5mJy) by a factor of ∼4. As both models (“A” fixed 15 Fig.13).Thedatashowanintrinsic1σdispersionof0.32.This &“B”variablefaintslope)arestatisticallyacceptable,wecon- equationimpliesthatL increases∼3timesfasterthanL .The 15 R cludethatgiventhepresentlyavailablestatisticsthetwomod- relationworksforbothnearbyanddistantobjects(fromz=0up elsareequivalentwithintheerrors. toz=0.7)and,therefore,hasbeenusedtoestimatethefraction M02 measured for the first time the evolution of type- of sources lost due to the spectroscopic limit of the different 1 AGN based on a preliminary mid-IR catalogue from the surveys,i.e.theΘ(z,L )termusedintheminimisationofthe 15 ELAIS-S1field.Thevaluesfoundhereforthefixedfaintslope Sfunction(seeeq.3). LF (model“A”) are in agreementwith what alreadyfoundby The LF was computed in the luminosity range logL = 15 M02 within ∼1σ errors. The only exception is for the bright [42,47]and in the redshiftintervalz = [0,0.7].A total of 75 slope (β),where the herederivedvalue is flatter (2.29+0.36 vs. −0.16 sources(25fromELAISand50fromRMS) wereusedtode- 2.89+0.29). This difference can be understood if we take into −0.26 rivetheLFshapeandevolution.BestfitvaluesfortheLFpa- accountthelargeuncertaintiesinthebrighterluminosityinter- rameters,aswellasthecorresponding2D-KSprobabilities,can vals(inbothM02andoursample)duetothesmallnumberof be foundin Table2 for each of the two representativemid-IR sources.Whilethe2D-KStestgivesa11%probabilitythatthe k-correctionsassumed. oursampleofAGNiswellrepresentedbyanon-evolvingfaint For type-2 AGN, we followed the same fitting sequence slope (model“A”), this probabilitydecreases to 5% if we use as for type-1 AGN. The results for a fixed faint slope (PLE theparametersvaluesreportedbyM02(Table1inM02). model)arefoundonTable2onrowslabeled“C”(fortheNGC 1068 k-correction)and “E” (for the Circinusk-correction).In both cases, the value of the 2D-KS test (P =0.16 & 0.18 3.3.TheEvolutionoftype-2AGN 2DKS respectively)doesnotrejectthe PLE model,butan important Asfortype-1AGN,arelationbetweentheintrinsic15µmlu- sourceoverpredictionisagainpresentinthemodelifcompared minosity(L )andtheopticalluminosity(L )fortype-2AGN to the observed data for the low luminosity and moderate-z 15 R isrequiredtocorrectfortheopticalincompleteness.FLF04has (z=[0.1,0.6])partofthesample.Abetterfitisfoundbyassum- 8 Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR Fig.6.ObservedandbestfitLFfortype-2AGNat<z>=0.05(continuousline)and<z>=0.35(dash–dottedline).Thesolutionswitharedshiftdependentfaintslope,assuminga NGC1068(“D”;leftpanel)andCircinus(“F”;rightpanel)k-corrections,areshown.SymbolsandshadedareasasinFig.4.Duetothesmallredshiftintervalsused,andforthesake ofclarity,theplotshavebeendividedintotwopanelsforthelow-redshift(top)andintermediate-zsources(bottom).Atintermediate-z,thethinlineshowsthelow-zbestfit. inganevolvingfaintslopeoftheLFparameterisedasspecified the one measured for type-1 sources (k ∼ 2.8 ± 0.3). On L in§3.2.Inthiscase,inordertoavoidunphysicalsolutionsdue the other hand, an evolution rate k ∼ 2.5± 0.5 is obtained L to the low statistics at high redshift,the α parameterwas al- if the Circinus SED is assumed, closer to the one measured 2 lowedtovaryintherange[0,6],whiletheα parameterwasal- for type-1 AGN. These differences in k are caused by the 3 L lowedtovaryintherange[0,2].Indeed,bothparametersfound strongerk-correctionintroducedbytheCircinusSED(Fig.1), a solution at the edgesof the allowed ranges. The results can which generates higher intrinsic luminosities in the redshift befoundinTable2andFigure6,fitslabeled“D”and“F”for range [0.1,0.6] compared to those given by the NGC1068 k- theNGC1068andCircinusk-correctionsrespectively. correction.Atvariance,theimpactoftheassumedSEDonall Fig.6showstheobservedandpredictedspacedensitydis- theotherfittedparametersissmall(seeTable2&Fig.6). tribution of the type-2 AGN in two representativeredshiftin- ForeachbestfitLFofthetype-2AGN,thepredictedcounts tervals, low-z (z = [0,0.1])where the IRASsources dominate andredshiftdistributionswerederivedandcomparedwiththe and intermediate-z (z = [0.1,0.6]), mainly populated by ISO observeddata.Predictionsat15µmfortheintegralcountsare sources.Theoverallbestsolutionfoundforthe two represen- given in the left panel of Fig. 7, while the derived redshift tative SED, NGC1068 (left panel, model “D”) and Circinus distribution is shown in the right panel of the same figure. (rightpanel,model“F”),areplotted.Theobservedspaceden- In both panels of Fig. 7 a thick-dashed line represents the sity,errors,upperlimitsandthe1σconfidenceregionsforthe Circinus fixed slope model (“E”), a thick-continuousline the LF have been computed and plotted as described in §3.2. As Circinus variable slope model (“F”), a thin-dashed line the observed for type-1 AGN, the errors introduced by the low NGC1068fixedslopemodel(“C”)andathick-continuousline statistics (light shaded area) are larger than the ones due to theNGC1068variableslopemodel(“D”). theassumptionsontheL15/LRrelation(darkshadedarea).For A good agreement,within the errors, between the models example, in this case, while the error introduced by the as- andthedataisobserved.Atvariancewiththesolutionsfound sumed L15/LR relation in the determination of the density of forthetype-1AGN(§3.2),althoughahigher2D-KSprobabil- type-2AGN is ∼20%at the breakluminosity(L∗ ) of the LF, ityisobtainedusingavariablefaintslopemodel,nomajordif- 15 the limited statistics introduce, instead, a ∼60% uncertainty. ferencesare observedin the integralcountsdown the faintest Therefore, also for type-2 AGN, in order to compute the er- ELAIS flux (∼1mJy; logS ∼ 0). The differences between 15 rorsontheLFparametersandonanyderivedquantity(counts the various models only become significant at fainter fluxes and redshift distributions) the uncertainties introduced by the (S ≤ 1mJy), especially at the fluxesreachedby the Spitzer 15 assumptionsonthevalueoftheL15/LR relationhavebeenne- space observatory (S24 ∼ 0.01mJy; see §6). Indeed, the rel- glected. ative errors are rather uniform, with mean values around 30- The rate of evolution k found for type-2 AGN depends 50%. Therefore, the higher observed density of the deep ISO L stronglyontheassumedSED.IfanNGC1068k-correctionis data(afactor∼10)isstatisticalsignificant.However,asprevi- adopted, the rate of evolution is k ∼ 2.0 ± 0.5, lower than ouslymentioned(§2),thehigherdensityofAGNfoundinthese L Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR 9 Fig.7.Left)Observedandpredictedintegralcountsfortype-2sourcesusingthethetworepresentativeSED:NGC1068(thin-dashedforthe“C”modelandthin-continuousforthe “D”model)andCircinus(thick-dashedforthe“E”modelandthick-continuousforthe“F”model).Right)Observedandpredictedtype-2AGNredshiftdistributionforthedifferent modelsmentionedbefore.Linesasinleftpanel.SymbolsandshadedareainbothpanelsasinFig.5.Errorsreportedinthelowersectionofbothpanelshavebeencomputedand plottedasdescribedinFig.5. fieldsispartlyduetothe classificationmethodused,whichis usedintheminimisationprocess.Ifthesuggestedflatteningis notonlybasedonapureopticalspectralclassification.Thepre- reallyduetoanincompletenesseffect,thenthepossiblymissed dictedredshiftdistributionsagree,withintheerrors,inthered- objectsareexpectedtofollowanoptical-mid-IRrelationdiffer- shift interval where the LF was computed (z = [0,0.7]). The entfromtheonemeasuredfortheidentifiedfractionofthehigh different behaviour observed at z > 0.7 is understood by the redshiftISOsourcesandinthelocaluniversebyIRAS(z<0.1) differentk-correctionsobtainedfromtheadoptedSED.Thees- andadoptedinourestimateofΘ(z,L ).Inthecaseoftype-1 15 timatederrorsrangefromafactor∼1.3atlowredshiftto∼2.0 AGN,iftheaveragevalueoftheassumedlog(L /L )relation 15 R at the limiting redshiftused to fit the LF, and increase drasti- isincreasedby2.5timestheobserveddispersionoftherelation callywhenthepredictionsareextrapolatedathigherredshifts. (i.e.∼0.86insteadof0.23),∼7additionalsourceswouldbeex- pectedatlow luminosityandhighredshifts,thusavoidingthe needforaflatteningoftheLF.ThishigherL /L valuecould 15 R 3.4.ThemissingfractionofAGN correspond,forexample,tosourceswithasignificantlylarger amount of gas and dust with respect to the local samples of Intheprevioussectionswehaveseenthataflatteningwithred- Elvisetal.(1994)andSpinoglioetal.(1995).Fortype-2AGN, shift of the faint slope of both type-1 and type-2 luminosity therelationderivedbyLaFrancaetal.(2004)impliesthatfor functionsisslightlyfavouredbythedata.Thisflatteningwould thelowluminosity(L < L∗ )andmoderateredshift(z∼0.1– disappear if ∼7 additional type-1 AGN, in the luminosity- 15 15 0.5) sources, all the possible opticalcounterpartsshould have redshift range logL =[42,45] and z=[0.2,3.2], and ∼6 addi- 15 been observed. Only the high luminosity (L > L∗ ), higher tionaltype-2AGNwithinlogL15=[42,44]andz=[0.1,0.7]were 15 15 redshift(z>0.5)sourcesareaffectedbyincompleteness.Also found.We briefly discussnowtwo possibleoriginsofincom- in this case a significant higher value of the L /L relation pleteness for the mid-IR AGN sample and their effects on 15 R wouldberequiredinordertoavoidtheneedforaflatteningof the observed LF: i) objects not identified due to the spectro- theLF. photometriclimitofcompletenessofthesurveyand,ii)possi- blemisclassificationoftheobjects. A second source of incompleteness could be caused by a The spectroscopic incompleteness at faint optical mag- spectroscopicmis-classificationofthesources.Theincreasein nitudes of the ELAIS sample is represented by the factor themeanredshiftoftheISOpopulationwithrespecttothelo- Θ(z,L ) (§3.1).The correctionsintroducedthroughthisterm calIRASsample(see Table1) impliesthata largerfractionof 15 are represented in Fig. 8 as a function of redshift and mid- the host galaxy light is collected for a given size of the slit IR luminosity. The shaded areas in the figure outline the re- used for the optical spectroscopic identifications. The conse- gion where type-1 (top) and type-2 sources (bottom), fainter quence is a dilution of AGN signatures that affects the mea- thanthespectro-photometriclimitofthesurveys,areexpected sured equivalentwidths (EW) and line ratios (see e.g. Moran to be found. A darker area in the plot indicates that a higher etal.2002).Theeffectislessimportantfortype-1sourcesdue fraction of correction has been applied (i.e. highernumber of tothepresenceofeasilyidentifiedbroademissionlinescaused lostsources)anditspansfrom∼1%(light-greyarea)to∼30% by a directview of the centralenergysourcewith a low level (darkest area) of the total sky area available in a given inter- of obscuration. The situation is more complicated for type-2 valofredshiftandluminosity.Thecorrectioncomputedcorre- AGN since their higher degree of obscuration suppresses an spondsto∼4type-1and∼1type-2sourcesintheL −zinterval importantfractionoftheopticallightfromthenuclei.Thehost 15 10 Matute,LaFranca,Pozzietal.:TheEvolutionofAGNinthemid-IR Table 3.Parametervaluesofthefitofthemid-IRLuminosity Functions Type-1 Type-2 All α β logL∗ α β logL∗ α β logL∗ 15 15 15 RMS(a) 0.0 2.1 42.8 0.0 2.5 43.2 0.3 2.1 43.4 Xu03(a,b) - - - - - - 0.3 1.7 43.4 Here(low-z)(c) 1.3 2.8 44.8 0.9 2.7 44.1 - - - Here(int-z)(c,d) 0.7 2.8 45.4 0.0 2.7 44.6 - - - (a)Luminositieshavebeenconvertedto15µmusingtheadoptedSEDs. (b)FromXuetal.2003. (c)Bestfitsolutionsfortype-1(model“B”)andtype-2(CircinusSED,model“F”). (d)Intermediateredshift,z=0.6. manyas10to25sources,classified intheopticalasstarburst ornormalgalaxies,mayharbouranAGNthatcancontributeto theobservedmid-IRflux.Ifthisisthecase,thenumberoftrue type-2AGNmaybehigherbyafactor∼1.4−2.0thanthatused inthisanalysisandthiswouldhaveimportantconsequencesfor theobservedLFanditsevolution. We conclude that the observed flattening with redshift of theLFforlowluminosityAGNcanbeexplainedifweassume thattheincompletenessintheELAISsamplewasnotproperly modeled,fortwopossiblereasons:(i)theunidentifiedfraction of sources may have a L /L ratio different from that of the 15 R identifiedAGNor,(ii)morelikely,arelevantfractionoftype- 2 AGN could have been mis–classified due to dilution of the opticalnuclearspectrabythehostinggalaxy.Thesesourcesof incompletenessareprobablyalmostnegligiblefortype-1AGN (especially the last one), while our measure of the density of Fig.8.Luminosity–redshiftdistributionofthetype-1(top)andtype-2(bottom)AGN. type-2AGNhasinsteadtobeconsideredalowerlimit. Shadedareasrepresentsthefractionofincompletenessduetotheopticalspectroscopic limits.Contoursrangefrom75%(black)to95%(light-gray)ofthetotalarealostand havea5%stepbetweenthem.Fortype-1AGN∼4missedsourcesareexpectedwithin z=[0.1,1.2].Mostmissedtype-2AGNareonlyexpectedwithlogL15 >44.5atz>0.7, aredshiftrangeoutsidethecurrentanalysis(seetext).Only∼1missedtype-2sourceis expectedtoliewithinz=[0.3,0.5]andL15 = [43.5,45.0].Dottedlinesinbothpanels 4. Comparisonwithpreviousworks showthreerepresentativefluxlimitsat1,4and300mJy. 4.1.TheIRAS12µmlocalluminosityfunction galaxywouldthennaturallycontributewithalargerfractionto Alocalluminosityfunction(LLF)fortype-1andtype-2AGN theobservedopticallightfromthe nuclearsource,sometimes was derived at 12µm by RMS. Their results can be directly even dominating it. The effect is maximised for the intrinsi- compared to our findings at z=0. The values for the LF pa- callyfaintAGN,whoseopticalfeatureswillbehighlydiluted rametersreportedbyRMSandthosecomputedbyusaresum- intothehostgalaxyspectrum.Thiseffectcouldberelevantin marisedinTable3. producingtheobservedflatteningathighredshiftofthelumi- Two parameters of the LF computed by RMS, the faint nosityfunction. slope (α) and the luminosity break (L∗ ), differ significantly 15 ObservationswithXMMandChandrahaveuncoveredanot from our solutions for both the type-1 and the type-2 AGN. negligiblenumberofAGNforwhichtheclassificationgivenby Thedifferenceonthevalueoftheluminositybreakcannotbe theiropticalspectradoesnotcorrespondtotheX–rayclassifi- explained by the SEDs conversion factors from 12 to 15µm, cationofthesource(e.g.Fioreetal.2000,2003;Bargeretal. since theyimply a small changein the intrinsic luminosityof 2005).Intheiranalysisofdeep(∼70Kseclong)XMMobserva- thesources(∆logL[12−15µm]∼0.0fortype-1and∼0.1for tionsonELAISS1-5,LaFrancaetal.(inpreparation)findthat type-2 AGN). These discrepancies can instead be understood the fraction of misclassified type-1 AGN appearsto be negli- ifwetakeintoaccountthat:(i)thefaintslopewasfixedapri- gible.Vice-versa,inthecaseoftype-2AGN,theobservations ori in the fitting procedure by RMS; (ii) the strong effect of withXMMhaverevealedthatabout10-20%oftheISOcounter- evolution in the different luminosity bins was not considered partsopticallyclassifiedasno-AGN(i.e.normalandstarburst by RMS and, (iii) our best fit is obtained by taking into ac- galaxies) show X–ray luminosity consistent with AGN activ- countnotonlythelocalIRASsourcesbutalsothehighredshift ity.Thisfraction,inthecaseofELAIS-S,wouldimplythatas ISOCAMpopulation.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.