REVIEWARTICLE published:21January2013 doi:10.3389/fnins.2012.00200 Action of neurotransmitter: a key to unlock the AgRP neuron feeding circuit TieminLiu1,QianWang1,EricD.Berglund1 andQingchunTong2* 1DivisionofHypothalamicResearch,DepartmentofInternalMedicine,TheUniversityofTexasSouthwesternMedicalCenteratDallas,Dallas,TX,USA 2TheBrownFoundationInstituteofMolecularMedicine,TheUniversityofTexasHealthScienceCenteratHouston,Houston,TX,USA Editedby: Thecurrentobesityepidemicandlackofefficienttherapeuticsdemandaclearunderstand- KevinW.Williams,TheUniversityof ingofthemechanismunderlyingbodyweightregulation.Despiteintensiveresearchfocus TexasSouthwesternMedicalCenter, onobesitypathogenesis,aneffectivetherapeuticstrategytotreatandcureobesityisstill USA lacking.Excitingstudiesinlastdecadeshaveestablishedtheimportanceofhypothalamic Reviewedby: SergeH.Luquet,UniversityParis agouti-relatedprotein-expressingneurons(AgRPneurons)intheregulationofbodyweight Diderot-Paris7,France homeostasis. AgRP neurons are both required and sufficient for feeding regulation.The ScottSternson,HowardHughes activityofAgRPneuronsisintricatelyregulatedbynutritionalhormonesaswellassynap- MedicalInstitute,USA ticinputsfromupstreamneurons.ChangesinAgRPneuronactivityleadtoalterationsin QiWu,UniversityofIowa,USA the release of mediators, including neuropeptides NeuropeptideY (NPY) and AgRP, and *Correspondence: QingchunTong,TheBrown fast-actingneurotransmitterGABA.Recentstudiesbasedonmousegenetics,novelopto- FoundationInstituteofMolecular genetics,anddesignerreceptorexclusivelyactivatedbydesignerdrugshaveidentifieda Medicine,TheUniversityofTexas criticalroleforGABAreleasefromAgRPneuronsintheparabrachialnucleusandparaven- HealthScienceCenteratHouston, tricularhypothalamusinfeedingcontrol.Thisreviewwillsummarizerecentfindingsabout 1825PresslerStreet,Houston,TX 77030,USA. AgRPneuron-mediatedcontroloffeedingcircuitswithafocusontheroleofneurotrans- e-mail:[email protected] mitters. Given the limited knowledge on feeding regulation, understanding the action of neurotransmittersmaybeakeytounlockneurocircuitrythatgovernsfeeding. Keywords:AgRPneurons,parabrachialnucleus,paraventricularhypothalamus,feeding INTRODUCTION In regard to feeding control, emerging results demonstrate Theabilitytoharnessenergyfromavarietyofmetabolicpathways orexigenicAgouti-relatedprotein(AgRP)neuronsinthearcuate is a property of all living organisms. For a multi-organ system nucleus(Arc)ofthehypothalamusarecriticalregulatorsoffeed- likerodentsandmammals,differentorganshaveevolvedtoper- ingandfood-seekingbehavior(Ollmannetal.,1997;Cone,2005; formdistinctfunctionstomaintainenergybalance.Forexample, Flier,2006).ActivationofAgRPneuronsinmicecauseshyperpha- thebraincontrolstheintakeofenergy(mostlycarbohydrates,fats, gia,increases motivation to work for food,and initiates intense andproteins),whichisabsorbedbythedigestivesystem,trafficked food-seekingbehavior(Aponteetal.,2011;Krashesetal.,2011), bytheliver,anddistributedtothebodyviathecirculationsystem while inhibition of AgRP activity or ablation of AgRP neurons (Schwartzetal.,2000;Saperetal.,2002;ElmquistandFlier,2004). leadstoreducedfeedingorstarvation(Bewicketal.,2005;Gropp Adisturbanceinthedelicatebalancebetweenenergyintakeand etal.,2005;Luquetetal.,2005;Xuetal.,2005a;Wuetal.,2009). energy requirements in the body will lead to changes in metab- SincetheactivitylevelofAgRPneuronsisadeterminantforfeed- olism and body growth (body weight). During evolution when ing,itwillbeimportanttounderstandhowtheactivityofAgRP foodisnotalwaysavailable,excessenergyisstoredasfat,which neurons is controlled. The ultimate result of changes in AgRP canbeusedwhenfoodisscarce.Thus,foragivenlivingsubject, neuronactivityisalterationsinneurotransmitterrelease,whichis energy balance is depicted as energy intake=internal heat pro- theonlywayforneuronstotransmitsignalstodownstreamtar- duced+external work+energy storage (fat; Saper et al.,2002). gets.Decipheringthefunctionofneurotransmittersreleasedfrom Obesityisdefinedastheexcessivefataccumulation.Thecurrent AgRPneuronsandtheirdownstreamtargetsrepresentsacritical obesityepidemicandlackofefficienttherapeuticsdemandaclear steptowardunderstandingtheAgRPneuralpathwayforfeeding understanding of the mechanisms underlying body weight reg- control.Thisreviewdiscussesrecentfindingsonthecontrolthe ulation. It is now well established that the brain, especially the AgRPactivityandthefunctionof neurotransmittersfromAgRP hypothalamus,maintainsbodyweighthomeostasisbyeffectively neurons. adjustingfoodintakeandenergyexpenditure(internalheatpro- ductionandexternalwork)inresponsetochangesinthelevelsof UPSTREAMREGULATORSOFAgRPNEURONS variousnutritionalstatusindicatorssuchasleptin,insulin,ghre- UPSTREAMHUMORALREGULATORSOFAgRPNEURONS–LEPTIN, lin,andothers(Elmquistetal.,1999;Pintoetal.,2004;Nogueiras GHRELIN,INSULIN etal.,2008;Friedman,2009;Yangetal.,2011;Heppneretal.,2012; Agouti-relatedproteinneuronsinthehypothalamicArcarecrucial Liuetal.,2012).Recentstudieshaveidentifiedimportantgroups targets of feeding hormones. One of these hormones is ghre- of neurons and genes in the hypothalamus for energy balance lin,whichpromotespositiveenergybalance(Tschopetal.,2000; regulation(Cone,2005;Elmquistetal.,2005). Nakazato et al., 2001; Nogueiras et al., 2008). Ghrelin was first www.frontiersin.org January2013|Volume6|Article200|1 Liuetal. NeurotransmitteractionandAgRPneuronregulation identifiedin1999asanendogenousligandofthegrowthhormone suggestedtoinhibitPOMCneuronsindirectlybyactivatingAgRP secretagogue receptor (GHSR) and is synthesized and secreted neurons(Cowleyetal.,2003;Tongetal.,2008;Wuetal.,2008a; mainlyfromendocrinecellsofthestomachandintestine(Kojima Atasoyetal.,2012).Feedingstimulationbyghrelinisabolishedin et al., 1999; Wierup et al., 2007). Both central and peripheral AgRP/NeuropeptideY(NPY)doubleknockoutmiceandablation administrations of ghrelin stimulate appetite and food intake, ofAgRPneuronsinadulthoodindicatingthatghrelinsignalingin increasebodyweight,andpromoteadiposityanddecreaseenergy AgRP neurons is important for controlling feeding (Chen et al., expenditure in rodents indicating an orexigenic impact via cen- 2004;Bewicketal.,2005). tral signaling (Tschop et al., 2000; Wren et al., 2000; Asakawa Leptin, which counter-acts the effects of ghrelin to regulate et al., 2001; Nakazato et al., 2001). Histological examination of energybalanceandfoodintake,isahormoneproducedbyfattis- GHSRshoweditspresenceinseveralhypothalamicnucleiinclud- sue. The gene for leptin was first cloned in 1994 (Zhang et al., ingArcandparaventricularnucleusofthehypothalamus(PVH) 1994) followed by the gene for the leptin receptor (LEPR) in anddirectbindingof ghrelininthesehypothalamicregionswas 1995(Tartagliaetal.,1995).Micewithleptindeficiency(ob/ob)or also found (Cowley et al., 2003; Zigman et al., 2006). In these deficitsinitsreceptor(db/db)showsevereobesityphenotypethus potential sites of ghrelin action,theArc where GHSR mRNA is supporting a crucial role for leptin signaling to regulate feeding abundantlyexpressed,isthoughttocontaintheprimaryghrelin- andenergyexpenditure(Friedman,1998;FriedmanandHalaas, responsiveneuronsmediatingeffectsonfeedingandbodyweight. 1998).LEPRmRNAishighlyexpressedwithinthehypothalamus GHSRsarepredominantlyexpressedintheorexigeniccellpopula- includingtheventromedialnucleusofthehypothalamus(VMH), tionintheArc,AgRPneurons(Figure1),incontrasttofewGHSRs thedorsomedialnucleusofthehypothalamus(DMH),andtheArc inproopiomelanocortin(POMC)neurons,theanorexigenicpop- whereLEPRisdenselyexpressedinbothAgRPandPOMCneu- ulationintheArc(Willesenetal.,1999;Nogueirasetal.,2008). rons(Figure1;Merceretal.,1996a,b;Elmquistetal.,1998,1999; TheneuronalactivityofAgRPneuronsistriggeredbyghrelinindi- Eliasetal.,1999).Indeed,directleptinactiononAgRPneurons catedbyincreasedelectricalactivityandc-fosimmunoreactivity has been revealed by the obesity phenotype caused by specific (Cowley et al.,2003;Andrews et al.,2008). Therefore,ghrelin is deletion of LEPR in AgRP neurons (van de Wall et al., 2008). FIGURE1|ModelunderlyingtheAgRPNeuronFeedingCircuit.AsummaryaboutupstreamanddownstreammediatorsofAgRPneuronsincluding(1) neuronalregulators-glutamate,GABA,AgRP,NPY,andβ-endorphin;(2)humoralregulators–leptin,ghrelin,insulin. FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article200|2 Liuetal. NeurotransmitteractionandAgRPneuronregulation Activationofleptin-responsiveneuronsinvolvesinductionofthe Inaseriesofelegantinvitroelectrophysiological,pharmacoge- JAK-STAT3 signaling pathway,which regulates the gene expres- netic,andoptogeneticexperimentsonacutebrainslicesinfedand sion(Batesetal.,2003;BatesandMyers,2004).Consistentwithits food-deprivedmice,Yangetal.(2011)foundthatfastingactivation anorexigenicrole,leptinadministrationdirectlyinhibitsneuronal ofAgRPneuronsdoubledthefrequencyofexcitatorypostsynap- activityofAgRPneuronsanddepolarizesPOMCneurons(Span- tic currents, but not amplitude. They also investigated in great swicketal.,1997;Cowleyetal.,2001;Elmquistetal.,2005).The detail the paired-pulse ratio (PPR) in wild-type mice and con- directbutoppositeactionsofleptininAgRPandPOMCneurons cludedthattheverylowPPRofglutamatergicinputsontoAgRP arefurtherconfirmedby(1)inductionof STAT3inbothpopu- neurons in ad libitum fed mice limits the capability to observe lations;(2)increasedc-fosimmunoreactivityinPOMCneurons, anyfurtherreductionof PPRafterfooddeprivation.Consistent butnotinAgRPneuronsafterleptintreatment(Eliasetal.,1999). with this, they showed a dissociation of PPR in fed and fasted Although GHSR and LEPR are co-expressed in the medial part miceuponloweringextracellularcalcium(acommonmethodfor of the Arc, the function of LEPR is likely to be independent of revealingchangesinpresynapticreleasepropertiesofhighrelease GHSRindicatedbytheevidencethatanorecticeffectsof exoge- probability synapses). Together, these lines of evidence suggest nouslyadministratedleptinweresimilarinwild-typeandGHSR aghrelin/ghrelinreceptor/AMP-activatedproteinkinasepathway knockoutmice(Perelloetal.,2012). operatinginpresynapticglutamatergicneurons(Figure1). Insulinisahormonemadeandsecretedbybetacellsinthepan- Other potential mechanisms have also been suggested. Pinto creasandplaysapivotalroleinregulatingbloodglucose.Anele- and colleagues measured EPSCs on AgRP neurons (via in vitro vationofbloodglucosestimulatespancreaticbetacellstosecrete electrophysiologicalrecordings)andanalyzedexcitatorysynapses insulin.Theincreaseincirculatinginsulinleadstoacceleratedglu- on perikarya (using electron microscopic stereology) and pro- coseuptakeintoperipheraltissues,whichisessentialtomaintain videddatasuggestingapostsynapticmechanism.Specifically,they glucose homeostasis (Shepherd and Kahn,1999). In addition to foundthatincreasedfrequencyofEPSCsonNPY/AgRPneurons wellknowngluco-regulatoryactionsofinsulinonperipheraltis- inleptin-deficientob/obmicewasassociatedwithincreasedexci- sues,insulinsignalinginthebrain(especiallythehypothalamus) tatory synapses on the perikarya of NPY/AgRP neurons (Pinto alsocriticallyregulatesbloodglucose(Obicietal.,2002;Plumetal., etal.,2004). 2006; Paranjape et al., 2010; Levin and Sherwin, 2011). Insulin Thereis additionalsupportforapostsynaptic mechanism.A receptors (INSR) are expressed in many CNS regions including recentstudybyLiuetal.(2012)evaluatedtheroleofglutamatergic the hypothalamus (Figure 1; Werther et al., 1987; Unger et al., inputtoAgRPneuronsandexcitatorysynapsesonthedendritic 1991).Amongthesehypothalamicneurons,insulin/PI3Ksignal- spinesofAgRPneurons.Theirstrategywastodecreaseglutamate inginbothAgRPandPOMCneuronsisrequiredformaintaining inputtoAgRPneuronsbyselectivelydeletingtheionotropicglu- glucose homeostasis (Konner et al., 2007; Hill et al., 2010; Lin tamatereceptor,NMDARs(MalenkaandNicoll,1999;Kesselsand et al., 2010). As early as 1979, intracerebroventricular infusion Malinow, 2009; Collingridge et al., 2010). Using Cre-loxP tech- of insulin was shown to reduce body weight and food intake in nology,theauthorscrossedAgrp-ires-Cremice(Tongetal.,2008) baboons,afeatureofanorexigenichormone(Woodsetal.,1979). with lox-NR1 mice (Tsien et al., 1996; NR1 is a required sub- RecentstudiessuggestthatinsulinactsonAgRPneuronstoexert unitoftheNMDAreceptor,deletionofNR1subunitscausestotal this anorexigenic role,which is mediated by activation of phos- loss of NMDAR activity) to generate Agrp-ires-Cre, NR1lox/lox phatidylinositol 3-kinases (PI3K) and the nuclear export of the mice (Voglis and Tavernarakis,2006; Higley and Sabatini,2008; forkheadtranscriptionfactor(Foxo1;Kimetal.,2006;Renetal., Bito,2010).TheyfoundthatdecreasedglutamateinputtoAgRP 2012).Likeleptin,insulinhyperpolarizesAgRPneurons,whichis neuronswasassociatedwithdecreasedbodyweight,foodintake, consistent with its role to reduce food intake and body weight ratesofre-feeding,EPSCfrequency,anddendriticspinenumber. (Spanswick et al., 2000; Konner et al., 2007). Although LEPR Importantly,fastingdidnotalterthePPRinwild-typemice.Liu andINSRco-expressinbothAgRPandPOMCcellpopulations, andcolleaguessuggestedthatpostsynapticNMDARsarerequired theactionsof LEPRandINSRareintegratedbyPI3KinPOMC forthefasting-inducedincreaseinEPSCfrequencythatisparal- neurons,butnotinAgRPneurons(Xuetal.,2005b). leled by dendritic spinogenesis. They propose a tentative model toexplainhowfastingregulatestheactivationofAgRPneurons: UPSTREAMNEURONALREGULATORSOFAgRP fasting→dendritic spinogenesis→formation of new excitatory NEURONS–GLUTAMATE synapses→increasedglutamatergictransmission→activationof Agouti-related protein neurons are regulated by numerous AgRPneurons. humoralandneuralinputs.Whileintensefocushasbeenplaced However, the findings of Liu et al. could not rule out the onidentifyingandunderstandinghumoralinputstoAgRPneu- possibilityofapresynapticmechanism,suggestingthatpresynap- rons(e.g.,leptin,ghrelin,insulin;Elmquistetal.,1999;Belgardt tic and/or postsynaptic mechanisms may apply concurrently or etal.,2009;Friedman,2009;Castanedaetal.,2010;PerelloandZig- assumedominancedependingonnutritionalstatus. man,2012),verylittleisknownaboutneuralregulationofAgRP The obvious question is to identify the source(s) of gluta- neurons. Recent findings that neurotransmitter inputs to AgRP matergicinputtoAgRPneurons.Candidateswillbeglutamatergic neurons(e.g.,glutamateandGABA)regulatefoodintakesuggest neuronsexpressingghrelinreceptors(Atasoyetal.,2012)including thatabnormaleatingbehaviorsanddramaticweightchangemay theArc,VMH,DMH,PVH,basolateralnucleusof theamygdala be linked to disturbances in neural regulation of AgRP neurons (BLA),andventralpremammillarynucleus(PMv;Figure1;Zig- (Pintoetal.,2004;Yangetal.,2011;Liuetal.,2012). man et al.,2006; Johnson et al.,2009;Vong et al.,2011; Perello www.frontiersin.org January2013|Volume6|Article200|3 Liuetal. NeurotransmitteractionandAgRPneuronregulation et al., 2012). One possible method is to use a monosynaptic othermodulatorsmentionedabove,NPYistheonlyonewidely rabiesapproachtodeterminethesource(s)ofpresynapticinputto expressedthroughoutthebody,boththeCNSandPNSinmam- AgRPneurons.Rabiesvirus,aneuronalcircuittracerintheretro- mals (Lundberg et al.,1982;Tatemoto et al.,1982). It is present gradedirection,canbeusedtotargetthemonosynapticinputto in many brain regions including the hippocampus, hypothala- AgRPneurons(Marsheletal.,2010;Walletal.,2010).Compared mus,amygdala,cortex(GrayandMorley,1986;Wahlestedtetal., to standard electrophysiological techniques, this approach will 1989),andtheperipheralnervoussystemincludingsympathetic reveal direct monosynaptic inputs toAgRP neurons by control- post-ganglionicneuronsandtheadrenalmedulla,andperipheral lingtheinitialrabiesvirusinfectionandsubsequentmonosynaptic organssuchasthepancreasandspleen(Lundbergetal.,1982;Eric- retrograde spread. These studies should identify glutamatergic ssonetal.,1987;Klimaschewskietal.,1996;Whim,2006,2011). neurons directly projecting to AgRP neurons to drive feeding TheknownNPYreceptorsincludeY1,Y2,Y4,andY5aswellas behavior. Y6inthemouse.AllYreceptorsareGproteincoupledreceptors and their activation usually causes inhibitory responses such as DOWNSTREAMMEDIATORSOFAgRPNEURONS inhibitionofcAMPaccumulation(Micheletal.,1998). Agouti-related protein neurons directly sense changes in nutri- IntheCNS,NPYismosthighlyco-expressedwithAgRPinthe tionalstatushormonessuchasleptin,insulin,ghrelin,andothers, ArcandsubstantialamountsofNPYarealsofoundinotherhypo- and neurotransmitters such as glutamate, GABA, and others to thalamicnucleiincludingthedorsomedialnucleus,andnumerous modulate energy homeostasis. As a result, AgRP neuron activ- NPYergicneuronsprojectintothePVH(Chronwalletal.,1985; itydramaticallyincreasesinresponsetofasting,signalinganeed vandenPoletal.,2009).NPYwasfirstfoundtopromotehyper- to eat (Takahashi and Cone, 2005). AgRP neurons also release phagiabasedonevidencethatintraventricularadministrationof downstream effectors (neural-GABA, AgRP, and NPY) to drive thispeptidesignificantlyinducedfeedingbehaviorinrats(Clark feeding(Figure1).Interestingly,comparedtocontrols,increasing etal.,1984,1985;LevineandMorley,1984;StanleyandLeibowitz, theactivitylevelof AgRPneuronsinduceshyperphagiawhereas 1984). Moreover,central administration of NPY reduces energy reducing the activity level of those neurons induces hypophagia expenditure and chronic infusion of NPY can induce obesity (Krashes et al.,2011),suggesting that the activity level of AgRP duetoovereating(Billingtonetal.,1991;FlierandMaratos-Flier, neurons correlates with the level of feeding. These data suggest 1998). that AgRP neurons are both sufficient and required for feeding Surprisingly,NPYknockoutmiceona129/SvCp-Jbackground regulation. didnotshowaphenotypeofreducedfeeding,bodyweight,oradi- posityundernormalconditions(Ericksonetal.,1996a).However, DOWNSTREAMNEUROPEPTIDEMEDIATORSOFAgRP geneticremovalofNPYattenuatedhyperphagiaandobesityphe- NEURONS–AgRPANDNPY notypeinleptin-deficientmice(Ericksonetal.,1996b).Inaddi- NeuropeptideY andAgRP are two neuropeptides released from tion,whenNPYknockoutmicewerebackcrossedontoaC57BL/6 AgRP neurons that potently induce feeding,consistent with the background,theyshoweddecreasedre-feedingafterfasting(Ban- roleofAgRPneuronstopromotefeeding(Elmquistetal.,2005). nonetal.,2000).ThisissimilartoY1knockoutmicethatdisplay Ghrelinincreasesfeedingbehaviorbystimulatingproductionof slightlydiminishedfeedingandstronglyreducedfasting-induced NPY and AgRP in AgRP neurons whereas leptin and insulin re-feeding(Pedrazzinietal.,1998).TheY2knockoutmousemodel inhibitsfoodintakeandbodyweightbydecreasingtheirexpres- exhibits decreased body weight gain and deletion of Y2 recep- sion (Schwartz et al., 1992; Korner et al., 2001; Zigman and torsintheadultmousehypothalamusledtotransientlydecreased Elmquist, 2003; Chen et al., 2004; Morrison et al., 2005; Goto body weight, but increased food intake indicating a functional etal.,2006). roleof hypothalamicY2receptorstocontrolfeeding(Sainsbury Ectopicexpressionofagoutiproteininmice(Ay/a)causesan etal.,2002a,b).Inaddition,Y5-deficientmiceshownormalfood obese phenotype (Bultman et al., 1992). AgRP, a homology of intakeandbodyweight,butdevelopobesityafter30weeksofage Agouti,wasidentifiedtobeup-regulatedinobesemicesuggesting (Marsh et al., 1998). Collectively, this literature studying roles apotentialroleofAgRPinfeedingandenergybalanceregulation of NPY and NPY receptors in feeding and energy balance sup- (Shutteretal.,1997).IntrocerebroventricularinjectionofAgRPor portstheimportanceofcentralNPYsignalinginregulatingenergy itsexpressioninatransgenicmousemodelbothleadtohyperpha- homeostasis. gia,loweredenergyexpenditure,andobesity(Grahametal.,1997; Rossietal.,1998;Smalletal.,2001).Theeffectofasingleinjection DOWNSTREAMNEURONALMEDIATORSOFAgRPNEURONS-GABA ofAgRPtopromotefeedingislong-lasting,whichisdifferentfrom Asreviewedabove,extensivestudieshavebeenfocusedontherole otherorexigenichormonesincludingghrelinandNPY(Schwartz of neuropeptides NPY andAgRP fromAgRP neurons. The role etal.,2000;Haganetal.,2001).AgRPaffectsfeedingbehaviorand of fast-acting neurotransmitter GABA has also been speculated metabolism by antagonizing the melanocortin receptors,MC3R to be important (Horvath et al., 1997; van den Pol, 2003), but and MC4R, which are stimulated by POMC cleavage products waslargelyneglecteduntilrecently.Todirectlyexaminetherole (Fan et al.,1997; Ollmann et al.,1997). Besides the mechanism ofGABAreleasefromAgRPneurons,Tongetal.(2008)generated of competitive antagonism, AgRP is also suggested to regulate micewithdisruptionofGABAreleasespecificallyfromAgRPneu- feedingbehaviorandenergybalanceasaninverseagonistof the rons by inactivating vesicular GABA transporter (VGAT). Tong centralmelanocortinsystem(Haskell-LuevanoandMonck,2001; et al. (2008) found that GABA release from AgRP neurons is Nijenhuis et al., 2001; Tolle and Low, 2008). Distinctive from required for normal body weight regulation, and disruption of FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article200|4 Liuetal. NeurotransmitteractionandAgRPneuronregulation GABA leads to increased energy expenditure and resistance to directlytesteduntilrecently.Usingacombinationofoptogenetic diet induced obesity. However, the degree in change of body and designer receptor exclusively activated by designer drugs weightduetodisruptionofGABAreleaseismild,suggestingthat (DREADD) approaches, Sternson laboratory elegantly demon- either other neurotransmitters released from AgRP neurons are stratedthat,indeed,AgRPneuronssenddirectGABAergicprojec- importantorthatdisruptionofGABAreleaseduringearlyembry- tions to POMC neurons; however,surprisingly,POMC neurons onic phases invokes developmental compensation which masks play a minimal role in mediating AgRP neurons on acute feed- physiological effects of GABA release. Consistent with the lat- ing (Atasoy et al., 2012). Consistently with this finding, results ter hypothesis, mice with lesions of AgRP neurons in neonates fromPalmiterlaboratorysuggestedthatstarvationresultedfrom exhibitamildreductioninbodyweightwhilethosewithlesions AgRPneuronsisindependentofthemelanocortinpathway(Wu of AgRP neurons in adults exhibit significantly reduced food et al., 2009). These data demonstrate that POMC neurons are intake or starved to death (Bewick et al., 2005; Gropp et al., not a major part of AgRP neuron feeding pathway, at least in 2005; Luquet et al., 2005; Xu et al., 2005a; Wu et al., 2009). acute hyperphagia response. Strikingly, there is no direct pro- It is interesting to point out that mice with lesions of AgRP jectionfromPOMCneuronstoAgRPneurons,ornoreciprocal neurons have been made in several laboratories, and the phe- projectionsbetweenPOMCorAgRPneurons,suggestingarather notypes of these mice range from mild reduction, more pro- simple, one way circuit from AgRP to POMC neurons (Atasoy nounced reduction in body weight,or starvation-induced death etal.,2012).WhetherthephysiologicalsignificanceofGABAergic (Bewick et al.,2005; Gropp et al., 2005; Luquet et al., 2005; Xu regulationof POMCneuronsbyAgRPneuronliesinlongterm et al., 2005a). These variant results might be due to different regulationoffeedingorinenergyexpenditureregulationremains approaches used to lesion AgRP neurons. Lesion of AgRP neu- tobeestablished.Likewise,thefunctionof potentialGABAergic rons through inactivating mitochondria might take more time projectionfromAgRPneuronstonon-POMCneuronsintheArc tokillAgRPneurons,allowingfordevelopmentalcompensation, isunknown. resultinginmildeffectsonbodyweight(Xuetal.,2005a).Lesion Previous data also suggest the importance of Arc projections ofAgRPneuronsmediatedbydiphtheriatoxin(DTX)isarapid to the PVH in energy balance (Elmquist et al., 2005) including process, resulting in more pronounced effects on body weight feeding and energy expenditure. For example,the melanocortin and feeding (Gropp et al., 2005; Luquet et al., 2005). Nonethe- pathwayfromPOMCneuronstothePVHhasbeensuggestedto less,thesestudiesdemonstratepowerfuldevelopmentalcompen- selectivelycontrolfeeding(Balthasaretal.,2005).Ithasalsobeen sation in response to loss of AgRP neurons in neonatal stages. speculated that GABAergic neurons in theArc mediate a major Mice with AgRP neuron lesions exhibit abundant c-fos expres- part of leptin action on body weight through projections to the sioninknownAgRPneuronprojectionsitesincludingthePVH PVH (Cone and Simerly, 2011). Recent data from Lowell labo- and parabrachial nucleus (PBN;Wu et al.,2008b). Strong c-fos ratory demonstrated that direct GABAergic projections from a expressionisconsistentwithlossof GABAprojection.However, novel subset of Arc neurons expressing Cre in Rip-Cre mice to accompanyingwiththec-fosexpression,therearealsoabundant thePVHplayaselectiveroleinenergyexpenditure(Kongetal., gliosis responses in both Arc and AgRP neuron projection sites 2012).ItiswellacceptedthatthePVHisonemajordownstream (Wu et al.,2008b).Whether the gliosis contributes to hypopha- site of AgRP neurons (Cone,2005;Elmquist et al.,2005). How- giainthese micehasnotbeen explored.It wouldbeinteresting ever,adirectdemonstrationofaroleofAgRPneuronprojection to directly examine the role of GABA release from AgRP neu- tothePVHinfeedingregulationislackinguntilrecently.Basedon ronsinadultmicethroughinducibledeletionofVGAT.Notably, similarsetsof elegantexperimentstothoseforPOMCneurons, mildphenotypesbyNPYknockoutmightnotbeduetodevelop- Sternson laboratory demonstrated a critical role for GABAergic mental compensations since mice with NPY deletion in adults projectionsfromAgRPneuronstothePVHinpromotingfeeding show minimal phenotype in energy balance (Ste Marie et al., byAgRP neuron activation (Atasoy et al.,2012). Specifically,by 2005). concurrent activation of PVH neurons andAgRP neurons,they GiventheestablishedimportanceofAgRPneuronsinfeeding showedthatactivationofPVHneuronseffectivelyreverseshyper- regulation,intense interests have been generated to look for the phagic effects by AgRP neurons activation (Atasoy et al.,2012), responsibleneurotransmittersfromtheseneurons.Recentexcit- suggesting that AgRP neuron induced hyperphaga is due to a ing results from Sternson and Palmiter laboratories suggest that heightened GABAergic tone to the PVH and that suppression GABAistheresponsibleneurotransmitterandmoreimportantly, of PVH neurons is required for AgRP neuron-mediated hyper- they have identified that the neurons in the PVH and PBN,but phagia.Furthermore,byselectivelyphotostimulatingAgRPfibers notPOMCneurons,arethedirectdownstreamsitesthatreceive thePVH,theirresultsshowedthatsuppressionof PVHneurons GABAtomediatefeedingregulationbyAgRPneurons(Wuetal., byAgRPneuronsissufficienttomediateAgRPneuron-mediated 2009;Atasoyetal.,2012). hyperphagia.Thus,suppressionofPVHneuronsisbothsufficient Previous electrophysiological data suggest that AgRP neu- andnecessaryforAgRPneuron-mediatedhyperphagia.Interest- rons send direct GABAergic projections to nearby POMC neu- ingly, a marked strengthening of GABAergic innervations from rons (Cowley et al., 2001). Coupled with an important role of AgRPneuronstoPVHneuronswasfoundtobeassociatedwith the melanocortin system in feeding regulation (Elmquist et al., NPYdeficiency.GiventheimportancetoGABAergicinnervations 2005), these results triggered the speculation that POMC neu- fromAgRP neurons to PVH neurons in feeding regulation,this rons are one of downstream sites to mediate AgPR neuron plasticchangesinGABAergicactionmayprovideanexplanation action on feeding (Cone, 2005). This speculation has not been forlackofphysiologicphenotypesbyNPYdeficiency.Consistently, www.frontiersin.org January2013|Volume6|Article200|5 Liuetal. NeurotransmitteractionandAgRPneuronregulation NPYreceptorblockagesignificantlybluntedthehyperphagiaeffect Caution should be exercised to directly compare the results causedbyphotostimulationofeitherAgRPfibersinthePVHor betweenSternsonandPalmitergroupssincetheformerdealswith AgRP neurons, suggesting that both GABA and NPY signaling rapid changes in neuronal activity with acute feeding and the appeared to be necessary for feeding evoked by the GABAergic latterdealswithslowalterationsinneuronalcircuitrywithlong projection from AgRP neurons to PVH neurons (Atasoy et al., termfeedingeffects.Nonetheless,theresultsfromthetwogroups 2012). It would be interesting to identify how NPY deficiency taken together suggest that GABAergic action from AgRP neu- causeschangesinGABAergicaction. rons to the PVH may preferentially mediate hyperphagic effects GiventhestrongfeedinginhibitioninducedbyAgRPneuron byAgRP neuron excitation,and that to the PBN may preferen- inhibition(Aponteetal.,2011;Krashesetal.,2011),itwouldbe tiallymediatehypophagiceffectsbyAgRPneuroninhibition.This interesting to examine whether PVH neurons mediate feeding- speculation is in line with the minimal phenotypes observed in reducing effects by AgRP neurons. A direct testing of this has micewithAgRPandNPYdeficiency(Qianetal.,2002),although notbeenreported.However,usingaextremecaseofAgRPneu- thelattercanbeexplainedbypotentialcompensatorychangesin rons inhibition,i.e.,AgRP neuron lesion,Palmiter group found GABAergic action (Atasoy et al., 2012). It may be the case that thatPVHspecificadministrationofGABA-Aagonistfailedtores- GABAergic projection from AgRP neurons to the PVH projec- cuethestarvationphenotypebyAgRPneuronlesion,suggesting tion is more engaged during fasting whereas that to the PBN that GABAergic projection fromAgRP neurons to the PVH has is more engaged during fed states. In addition to the PVH and nocontributiontothestarvationphenotypeproducedbyAgRP PBN,AgRP neurons also send GABAergic projections to several neuron lesion (Wu et al.,2009). Of note,the failure in rescuing other brain sites, and some of these sites might be important is not due to insignificant GABAergic input from AgRP neu- to mediate AgRP neuron feeding effects (Atasoy et al., 2012), rons since abundant c-fos expression, an indicator of neuronal but still await further demonstration. Further studies stemmed activation, was observed in the PVH as a result of AgRP neu- fromtheseresultswillshednewlightsonAgRPneuronfeeding ron lesion,and importantly,the increased c-fos expression were circuits. blunted by the application of GABA-A receptor. This data sug- gestthatexcitationofPVHneuronscontributesminimallytothe SUMMARY starvation phenotype by AgRP neurons lesion. Since PVH neu- Several laboratories have used a combination of mouse genet- ronexcitationbyGABA-Aantagonistssuppressesfeeding(Kelly ics and pharmacology to achieve specific lesion of adult AgRP et al., 1979), this result suggests that GABAergic action in the neurons, state-of-the-art optogenetics, and DREADD (Alexan- PVH from non-AgRP neurons might mediate feeding suppres- der et al., 2009; Wu et al., 2009; Krashes et al., 2011; Atasoy sion.InpursuitofdownstreamtargetstoGABAergicprojections et al., 2012) to achieve specific manipulation of adult AgRP fromAgRP neurons that mediate the starvation effects of AgRP neurons. Given the complexity of feeding behavior, these stud- neuron lesion, Palmiter group found that the starvation phe- ies represent a significant leap in understanding of brain feed- notype can be rescued by specific delivery of GABA-A receptor ing circuits. It appears that AgRP neurons have evolved to agonist in the PBN (Wu et al., 2009), highlighting an impor- be one of major determinants for an individual to harness tant role for GABAergic projections from AgRP neurons to the energy from the environment. With this in mind, modulating PBN. Consistently,adult lesion of AgRP neurons increases PBN the activity of AgRP neurons represents one strategy to control neuron activity (Wu et al., 2008b). Taken together, these data appetite in contexts of the current obesity epidemic (Ren et al., suggest a role for a decreased GABAergic tone fromAgRP neu- 2012). ronstothePBNinmodulatinghypophagiaresponse(Figure1). It is certain thatAgRP neurons are not the only key neurons The PBN is traditionally viewed as a center for taste aversion controllingfeedingbecauselesionoftheArcincludingAgRPneu- regulation, which, if activated by sensory inputs from the gut, ronsleadstohyperphagiaandobesity.Thus,intheArc,theremust induces taste aversion, serving as a general protective mecha- beotherfoodintake-inhibitingneurons,lesionofwhichoverrides nismtoavoidunpleasantfoodexperiencedbefore(Reilly,1999). theactionofAgRPneuronlesion.Nonetheless,basedontheexcit- Thus,itappearsthatbothhypophagiaandtasteaversionresponses ingresultsfocusingonAgRPneuronsandusingnewlydeveloped sharethesameneuralpathway.InadditiontoGABAergicinputs andhighlyinformativetechniques(mousegenetics,optogenetics, fromAgRP neurons,it appears that PBN neurons are also con- andDREADD),futurestudieswillprovidemoreinsightsonbrain trolledbyglutamatergicinputsfromthenucleusofsolitarytracts, circuitscontrollingfoodintake. which might mediate inputs from other neurons such as sero- toninergic neurons as well as sensory inputs from the gut (Wu ACKNOWLEDGMENTS et al., 2012). An interesting question is whether this projection Tiemin Liu was supported by the ADA mentor-based postdoc- also mediates hyperphagic effects produced by increased AgRP toral fellowship from theAmerican DiabetesAssociation (7-11- neuron activity. Surprisingly, Sternson group found that spe- MN-16 to Joel K. Elmquist). Eric D. Berglund was supported cificphotostimulationofAgRPfibersinthePBNfailstoinduce byNationalResearchServiceAward(5TL1DK081181).Qingchun theacutehyperphagiceffectsbyAgRPneuronactivation(Atasoy TongwassupportedbyaScientistDevelopmentAwardfromthe etal.,2012),suggestingthatacutehyperphagiainducedbyAgRP AmericanHeartAssociation(10SDG3280017),NationalInstitute neuron activation is not due to heightened GABAergic tone to of Health (1R01DK092605),and the Juvenile Diabetes Research thePBN. Foundation. FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article200|6 Liuetal. NeurotransmitteractionandAgRPneuronregulation REFERENCES energymetabolism.Am.J.Physiol. Elmquist, J. K., Bjørbaek, C., Ahima, nucleusinrathypothalamicorgan- Alexander,G.M.,Rogan,S.C.,Abbas,A. 260(Pt2),R321–R327. R. S., Flier, J. S., and Saper, C. otypiccultures.Endocrinology 147, I.,Armbruster,B.N.,Pei,Y.,Allen, Bito,H.(2010).Thechemicalbiologyof B. (1998). Distributions of leptin 5102–5109. J. A., et al. (2009). Remote con- synapsesandneuronalcircuits.Nat. receptormRNAisoformsintherat Graham,M.,Shutter,J.R.,Sarmiento, trol of neuronal activity in trans- Chem.Biol.6,560–563. brain.J.Comp.Neurol.395,535–547. U.,Sarosi,I.,andStark,K.L.(1997). genic mice expressing evolved G Bultman,S.J.,Michaud,E.J.,andWoy- Elmquist,J.K.,Coppari,R.,Balthasar, OverexpressionofAgrtleadstoobe- protein-coupled receptors. Neuron chik,R.P.(1992).Molecularcharac- N., Ichinose, M., and Lowell, B. sityintransgenicmice.Nat.Genet. 63,27–39. terizationofthemouseagoutilocus. B. (2005). Identifying hypothal- 17,273–274. Andrews,Z.B.,Liu,Z.W.,Walllingford, Cell71,1195–1204. amic pathways controlling food Gray, T. S., and Morley, J. E. (1986). N.,Erion,D.M.,Borok,E.,Fried- Castaneda, T. R., Tong, J., Datta, R., intake, body weight, and glucose NeuropeptideY:anatomicaldistrib- man,J.M.,etal.(2008).UCP2medi- Culler,M.,andTschöp,M.H.(2010). homeostasis. J. Comp. Neurol. 493, utionandpossiblefunctioninmam- atesghrelin’sactiononNPY/AgRP Ghrelin in the regulation of body 63–71. maliannervoussystem.LifeSci.38, neurons by lowering free radicals. weightandmetabolism.Front.Neu- Elmquist,J.K.,Elias,C.F.,andSaper, 389–401. Nature454,846–851. roendocrinol.31,44–60. C. B. (1999). From lesions to lep- Gropp,E.,Shanabrough,M.,Borok,E., Aponte,Y.,Atasoy,D.,andSternson,S. Chen,H.Y.,Trumbauer,M.E.,Chen, tin: hypothalamic control of food Xu,A.W.,Janoschek,R.,Buch,T., M.(2011).AGRPneuronsaresuffi- A.S.,Weingarth,D.T.,Adams,J.R., intakeandbodyweight.Neuron22, etal.(2005).Agouti-relatedpeptide- cienttoorchestratefeedingbehavior Frazier, E. G., et al. (2004). Orex- 221–232. expressing neurons are manda- rapidly and without training. Nat. igenic action of peripheral ghrelin Elmquist,J.K.,andFlier,J.S.(2004). tory for feeding. Nat. Neurosci. 8, Neurosci.14,351–355. ismediatedbyneuropeptideYand Neuroscience. The fat-brain axis 1289–1291. Asakawa,A.,Inui,A.,Kaga,T.,Yuzuriha, agouti-related protein. Endocrinol- entersanewdimension.Science304, Hagan,M.M.,Rushing,P.A.,Benoit, H.,Nagata,T.,Ueno,N.,etal.(2001). ogy145,2607–2612. 63–64. S. C.,Woods,S. C.,and Seeley,R. Ghrelin is an appetite-stimulatory Chronwall,B.M.,DiMaggio,D.A.,Mas- Erickson, J. C., Clegg, K. E., and J.(2001).Opioidreceptorinvolve- signalfromstomachwithstructural sari,V. J., Pickel,V. M., Ruggiero, Palmiter, R. D. (1996a). Sensitiv- mentintheeffectofAgRP-(83-132) resemblance to motilin. Gastroen- D.A.,andO’Donohue,T.L.(1985). ity to leptin and susceptibility to onfoodintakeandfoodselection. terology120,337–345. The anatomy of neuropeptide-Y- seizuresofmicelackingneuropep- Am.J.Physiol.Regul.Integr.Comp. Atasoy,D.,Betley,J.N.,Su,H.H.,and containing neurons in rat brain. tideY.Nature381,415–421. Physiol.280,R814–R821. Sternson,S.M.(2012).Deconstruc- Neuroscience15,1159–1181. Erickson, J. C., Hollopeter, G., and Haskell-Luevano,C.,andMonck,E.K. tionofaneuralcircuitforhunger. Clark,J.T.,Kalra,P.S.,Crowley,W.R., Palmiter,R.D.(1996b).Attenuation (2001).Agouti-relatedproteinfunc- Nature488,172–177. andKalra,S.P.(1984).Neuropeptide of the obesity syndrome of ob/ob tionsasaninverseagonistataconsti- Balthasar, N., Dalgaard, L. T., Lee, Y and human pancreatic polypep- micebythelossofneuropeptideY. tutivelyactivebrainmelanocortin-4 C. E., Yu, J., Funahashi, H., tide stimulate feeding behavior in Science274,1704–1707. receptor.Regul.Pept.99,1–7. Williams, T., et al. (2005). Diver- rats.Endocrinology115,427–429. Ericsson,A.,Schalling,M.,McIntyre,K. Heppner,K.M.,Müller,T.D.,Tong,J., gence of melanocortin pathways Clark, J. T., Kalra, P. S., and Kalra, R.,Lundberg,J.M.,Larhammar,D., andTschöp,M.H.(2012).Ghrelin in the control of food intake S.P.(1985).NeuropeptideYstim- and Seroogy, K. (1987). Detection inthecontrolofenergy,lipid,and and energy expenditure. Cell 123, ulates feeding but inhibits sexual of neuropeptide Y and its mRNA glucosemetabolism.Meth.Enzymol. 493–505. behaviorinrats.Endocrinology117, in megakaryocytes: enhanced lev- 514,249–260. Bannon, A. W., Seda, J., Carmouche, 2435–2442. els in certain autoimmune mice. Higley,M.J.,andSabatini,B.L.(2008). M.,Francis,J.M.,Norman,M.H., Collingridge,G. L.,Peineau,S.,How- Proc. Natl. Acad. Sci. U.S.A. 84, Calciumsignalingindendritesand Karbon, B., et al. (2000). Behav- land,J.G.,andWang,Y.T.(2010). 5585–5589. spines:practicalandfunctionalcon- ioralcharacterizationofneuropep- Long-termdepressionintheCNS. Fan, W., Boston, B. A., Kesterson, R. siderations.Neuron59,902–913. tideYknockoutmice.BrainRes.868, Nat.Rev.Neurosci.11,459–473. A., Hruby, V. J., and Cone, R. D. Hill, J. W., Elias, C. F., Fukuda, 79–87. Cone,R.D.(2005).Anatomyandreg- (1997). Role of melanocortinergic M., Williams, K. W., Berglund, E. Bates,S.H.,andMyers,M.G.(2004). ulationofthecentralmelanocortin neurons in feeding and the agouti D., Holland, W. L., et al. (2010). Theroleofleptin–>STAT3signal- system.Nat.Neurosci.8,571–578. obesity syndrome. Nature 385, Direct insulin and leptin action inginneuroendocrinefunction:an Cone,R.D.,andSimerly,R.B.(2011). 165–168. onpro-opiomelanocortinneuronsis integrativeperspective.J.Mol.Med. Leptingrowsupandgetsaneural Flier,J.S.(2006).AgRPinenergybal- requiredfornormalglucosehome- 82,12–20. network.Neuron71,4–6. ance:willtherealAgRPpleasestand ostasisandfertility.CellMetab.11, Bates,S.H.,Stearns,W.H.,Dundon,T. Cowley, M. A., Smart, J. L., Rubin- up?CellMetab.3,83–85. 286–297. A.,Schubert,M.,Tso,A.W.,Wang, stein,M.,Cerdán,M.G.,Diano,S., Flier,J.S.,andMaratos-Flier,E.(1998). Horvath,T.L.,Bechmann,I.,Naftolin, Y., et al. (2003). STAT3 signalling Horvath,T.L.,etal.(2001).Leptin Obesity and the hypothalamus: F., Kalra, S. P., and Leranth, C. isrequiredforleptinregulationof activatesanorexigenicPOMCneu- novel peptides for new pathways. (1997). Heterogeneity in the neu- energy balance but not reproduc- rons through a neural network in Cell92,437–440. ropeptideY-containing neurons of tion.Nature421,856–859. the arcuate nucleus. Nature 411, Friedman,J.M.(1998).Leptin,leptin the rat arcuate nucleus: GABAer- Belgardt,B.F.,Okamura,T.,andBrun- 480–484. receptors,andthecontrolof body gicandnon-GABAergicsubpopula- ing,J.C.(2009).Hormoneandglu- Cowley,M.A.,Smith,R.G.,Diano,S., weight.Nutr.Rev.56(Pt2),S38–S46; tions.BrainRes.756,283–286. cosesignallinginPOMCandAgRP Tschöp, M., Pronchuk, N., Grove, discussionS54–S75. Johnson,A.W.,Canter,R.,Gallagher, neurons. J. Physiol. (Lond.) 587(Pt K. L., et al. (2003). The distribu- Friedman,J.M.(2009).Leptinat14y M., and Holland, P. C. (2009). 22),5305–5314. tion and mechanism of action of ofage:anongoingstory.Am.J.Clin. Assessing the role of the growth Bewick,G.A.,Gardiner,J.V.,Dhillo,W. ghrelinintheCNSdemonstratesa Nutr.89,973S–979S. hormone secretagogue receptor S.,Kent,A. S.,White,N. E.,Web- novelhypothalamiccircuitregulat- Friedman,J.M.,andHalaas,J.L.(1998). in motivational learning and ster,Z.,etal.(2005).Post-embryonic ingenergyhomeostasis.Neuron37, Leptin and the regulation of body food intake. Behav. Neurosci. 123, ablation of AgRP neurons in mice 649–661. weight in mammals. Nature 395, 1058–1065. leadstoalean,hypophagicpheno- Elias,C.F.,Aschkenasi,C.,Lee,C.,Kelly, 763–770. Kelly, J., Rothstein, J., and Grossman, type.FASEBJ.19,1680–1682. J., Ahima, R. S., Bjorbaek, C., et Goto, M., Arima, H., Watanabe, M., S.P.(1979).GABAandhypothala- Billington, C. J., Briggs, J. E., Grace, al.(1999).Leptindifferentiallyregu- Hayashi,M.,Banno,R.,Sato,I.,et micfeedingsystems.I.Topographic M., and Levine, A. S. (1991). latesNPYandPOMCneuronspro- al. (2006). Ghrelin increases neu- analysisoftheeffectsofmicroinjec- Effects of intracerebroventricular jecting to the lateral hypothalamic ropeptideYandagouti-relatedpep- tions of muscimol. Physiol. Behav. injection of neuropeptide Y on area.Neuron23,775–786. tidegeneexpressioninthearcuate 23,1123–1134. www.frontiersin.org January2013|Volume6|Article200|7 Liuetal. NeurotransmitteractionandAgRPneuronregulation Kessels,H.W.,andMalinow,R.(2009). Mutt,V., et al. (1982). Neuropep- Nogueiras,R.,Tschop,M.H.,andZig- increases feeding and antagonizes Synaptic AMPA receptor plasticity tideY(NPY)-likeimmunoreactivity man,J.M.(2008).Centralnervous theeffectofalpha-melanocytestim- andbehavior.Neuron61,340–350. inperipheralnoradrenergicneurons systemregulationofenergymetab- ulatinghormoneinvivo.Endocrinol- Kim, M. S., Pak, Y. K., Jang, P. G., andeffectsofNPYonsympathetic olism:ghrelinversusleptin.Ann.N. ogy139,4428–4431. Namkoong,C.,Choi,Y.S.,Won,J. function. Acta Physiol. Scand. 116, Y.Acad.Sci.1126,14–19. Sainsbury,A.,Schwarzer,C.,Couzens, C.,etal.(2006).Roleofhypothala- 477–480. Obici,S.,Zhang,B.B.,Karkanias,G., M., and Herzog, H. (2002a). Y2 micFoxo1intheregulationoffood Luquet,S.,Perez,F.A.,Hnasko,T.S.,and and Rossetti,L. (2002). Hypothal- receptordeletionattenuatesthetype intakeandenergyhomeostasis.Nat. Palmiter,R. D. (2005). NPY/AgRP amic insulin signaling is required 2diabeticsyndromeofob/obmice. Neurosci.9,901–906. neuronsareessentialforfeedingin forinhibitionofglucoseproduction. Diabetes51,3420–3427. Klimaschewski, L., Kummer, W., and adult mice but can be ablated in Nat.Med.8,1376–1382. Sainsbury,A.,Schwarzer,C.,Couzens, Heym,C.(1996).Localization,regu- neonates.Science310,683–685. Ollmann,M.M.,Wilson,B.D.,Yang,Y. M.,Fetissov,S.,Furtinger,S.,Jenk- lationandfunctionsofneurotrans- Malenka,R.C.,andNicoll,R.A.(1999). K.,Kerns,J.A.,Chen,Y.,Gantz,I., ins, A., et al. (2002b). Important mittersandneuromodulatorsincer- Long-termpotentiation–adecade etal.(1997).Antagonismofcentral role of hypothalamic Y2 recep- vical sympathetic ganglia. Microsc. ofprogress?Science285,1870–1874. melanocortinreceptorsinvitroand tors in body weight regulation Res.Tech.35,44–68. Marsh,D. J.,Hollopeter,G.,Kafer,K. in vivo by agouti-related protein. revealed in conditional knockout Kojima, M., Hosoda, H., Date, Y., E.,andPalmiter,R.D.(1998).Role Science278,135–138. mice.Proc.Natl.Acad.Sci.U.S.A.99, Nakazato,M.,Matsuo,H.,andKan- of theY5 neuropeptideY receptor Paranjape, S. A., Chan, O., Zhu, W., 8938–8943. gawa,K.(1999).Ghrelinisagrowth- infeedingandobesity.Nat.Med.4, Horblitt,A.M.,McNay,E.C.,Cress- Saper,C.B.,Chou,T.C.,andElmquist,J. hormone-releasingacylatedpeptide 718–721. well, J. A., et al. (2010). Influ- K.(2002).Theneedtofeed:homeo- fromstomach.Nature402,656–660. Marshel, J. H., Mori, T., Nielsen, K. ence of insulin in the ventrome- staticandhedoniccontrolofeating. Kong, D., Tong, Q., Ye, C., Koda, S., J.,andCallaway,E.M.(2010).Tar- dial hypothalamus on pancreatic Neuron36,199–211. Fuller, P. M., Krashes, M. J., et al. getingsingleneuronalnetworksfor glucagonsecretioninvivo.Diabetes Schwartz,M. W.,Sipols,A. J.,Marks, (2012).GABAergicRIP-Creneurons gene expression and cell labeling 59,1521–1527. J. L., Sanacora, G., White, J. D., inthearcuatenucleusselectivelyreg- invivo.Neuron67,562–574. Pedrazzini,T.,Seydoux,J.,Künstner,P., Scheurink, A., et al. (1992). Inhi- ulateenergyexpenditure.Cell 151, Mercer, J. G., Hoggard, N., Williams, Aubert,J.F.,Grouzmann,E.,Beer- bition of hypothalamic neuropep- 645–657. L.M.,Lawrence,C.B.,Hannah,L. mann,F.,etal.(1998).Cardiovascu- tide Y gene expression by insulin. Konner,A.C.,Janoschek,R.,Plum,L., T.,andTrayhurn,P.(1996a).Local- lar response,feeding behavior and Endocrinology130,3608–3616. Jordan,S.D.,Rother,E.,Ma,X.,et ization of leptin receptor mRNA locomotor activity in mice lacking Schwartz,M.W.,Woods,S.C.,Porte, al.(2007).InsulinactioninAgRP- and the long form splice vari- theNPYY1receptor.Nat.Med.4, D. Jr.,Seeley,R. J.,and Baskin,D. expressing neurons is required for ant (Ob-Rb) in mouse hypothala- 722–726. G. (2000). Central nervous system suppressionofhepaticglucosepro- musandadjacentbrainregionsby Perello, M., Scott, M. M., Sakata, I., controloffoodintake.Nature404, duction.CellMetab.5,438–449. insituhybridization.FEBSLett.387, Lee,C.E.,Chuang,J.C.,Osborne- 661–671. Korner, J., Savontaus, E., Chua, S. C. 113–116. Lawrence, S., et al. (2012). Func- Shepherd,P.R.,andKahn,B.B.(1999). Jr., Leibel, R. L., and Wardlaw, S. Mercer,J.G.,Hoggard,N.,Williams,L. tional implications of limited lep- Glucose transporters and insulin L.(2001).LeptinregulationofAgrp M.,Lawrence,C.B.,Hannah,L.T., tin receptor and ghrelin receptor action – implications for insulin and Npy mRNA in the rat hypo- Morgan,P.J.,etal.(1996b).Coex- coexpressioninthebrain.J.Comp. resistanceanddiabetesmellitus.N. thalamus. J. Neuroendocrinol. 13, pressionofleptinreceptorandpre- Neurol.520,281–294. Engl.J.Med.341,248–257. 959–966. proneuropeptideYmRNAinarcu- Perello,M.,andZigman,J.M.(2012). Shutter,J. R.,Graham,M.,Kinsey,A. Krashes,M.J.,Koda,S.,Ye,C.,Rogan, atenucleusofmousehypothalamus. Theroleofghrelininreward-based C.,Scully,S.,Lüthy,R.,and Stark, S.C.,Adams,A.C.,Cusher,D.S.,et J.Neuroendocrinol.8,733–735. eating.Biol.Psychiatry72,347–353. K.L.(1997).Hypothalamicexpres- al.(2011).Rapid,reversibleactiva- Michel,M.C.,Beck-Sickinger,A.,Cox, Pinto, S., Roseberry, A. G., Liu, H., sionofART,anovelgenerelatedto tionofAgRPneuronsdrivesfeeding H., Doods, H. N., Herzog, H., Diano,S.,Shanabrough,M.,Cai,X., agouti,isup-regulatedinobeseand behaviorinmice.J.Clin.Invest.121, Larhammar,D.,etal.(1998).XVI. etal.(2004).Rapidrewiringofarcu- diabeticmutantmice.GenesDev.11, 1424–1428. International Union of Pharma- atenucleusfeedingcircuitsbyleptin. 593–602. Levin, B. E., and Sherwin, R. S. cology recommendations for the Science304,110–115. Small,C.J.,Kim,M.S.,Stanley,S.A., (2011). Peripheral glucose home- nomenclature of neuropeptide Y, Plum,L.,Belgardt,B.F.,andBruning, Mitchell, J. R., Murphy, K., Mor- ostasis:doesbraininsulinmatter?J. peptideYY,andpancreaticpolypep- J.C.(2006).Centralinsulinaction gan, D. G., et al. (2001). Effects Clin.Invest.121,3392–3395. tide receptors. Pharmacol. Rev. 50, inenergyandglucosehomeostasis. of chronic central nervous sys- Levine,A.S.,andMorley,J.E.(1984). 143–150. J.Clin.Invest.116,1761–1766. temadministrationofagouti-related Neuropeptide Y: a potent inducer Morrison,C.D.,Morton,G.J.,Niswen- Qian,S.,Chen,H.,Weingarth,D.,Trum- proteininpair-fedanimals.Diabetes ofconsummatorybehaviorinrats. der, K. D., Gelling, R. W., and bauer,M.E.,Novi,D.E.,Guan,X., 50,248–254. Peptides5,1025–1029. Schwartz, M. W. (2005). Leptin etal.(2002).Neitheragouti-related Spanswick, D., Smith, M. A., Groppi, Lin, H. V., Plum, L., Ono, H., inhibitshypothalamicNpyandAgrp proteinnorneuropeptideYiscriti- V.E.,Logan,S.D.,andAshford,M. Gutiérrez-Juárez, R., Shanabrough, gene expression via a mechanism callyrequiredfortheregulationof L.(1997).Leptininhibitshypothal- M.,Borok,E.,etal.(2010).Diver- thatrequiresphosphatidylinositol3- energy homeostasis in mice. Mol. amicneuronsbyactivationofATP- gentregulationof energyexpendi- OH-kinase signaling. Am. J. Phys- Cell.Biol.22,5027–5035. sensitivepotassiumchannels.Nature ture and hepatic glucose produc- iol.Endocrinol.Metab.289,E1051– Reilly, S. (1999). The parabrachial 390,521–525. tion by insulin receptor in agouti- E1057. nucleusandconditionedtasteaver- Spanswick,D.,Smith,M.A.,Mirshamsi, relatedproteinandPOMCneurons. Nakazato,M.,Murakami,N.,Date,Y., sion.BrainRes.Bull.48,239–254. S., Routh,V. H., and Ashford, M. Diabetes59,337–346. Kojima,M.,Matsuo,H.,Kangawa, Ren,H.,Orozco,I. J.,Su,Y.,Suyama, L. (2000). Insulin activates ATP- Liu,T.,Kong,D.,Shah,B.P.,Ye,C.,Koda, K.,etal.(2001).Aroleforghrelin S.,Gutiérrez-Juárez,R.,Horvath,T. sensitiveK+channelsinhypothal- S.,Saunders,A.,etal.(2012).Fasting inthecentralregulationoffeeding. L.,etal.(2012).FoxO1targetGpr17 amicneuronsoflean,butnotobese activationofAgRPneuronsrequires Nature409,194–198. activatesAgRPneuronstoregulate rats.Nat.Neurosci.3,757–758. NMDAreceptorsandinvolvesspin- Nijenhuis, W. A., Oosterom, J., and foodintake.Cell149,1314–1326. Stanley, B. G., and Leibowitz, S. F. ogenesis and increased excitatory Adan,R. A. (2001). AgRP(83-132) Rossi, M., Kim, M. S., Morgan, D. (1984).NeuropeptideY:stimulation tone.Neuron73,511–522. acts as an inverse agonist on G., Small, C. J., Edwards, C. M., offeedinganddrinkingbyinjection Lundberg,J.M.,Terenius,L.,Hökfelt, the human-melanocortin-4 recep- Sunter,D.,etal.(1998).AC-terminal intotheparaventricularnucleus.Life T., Martling, C. R., Tatemoto, K., tor.Mol.Endocrinol.15,164–171. fragmentof Agouti-relatedprotein Sci.35,2635–2642. FrontiersinNeuroscience|NeuroendocrineScience January2013|Volume6|Article200|8 Liuetal. NeurotransmitteractionandAgRPneuronregulation Ste Marie, L., Luquet, S., Cole, T. B., neurons controlling metabolism release peptide co-transmitters. Xu, A. W., Kaelin, C. B., Takeda, K., andPalmiter,R.D.(2005).Modu- and ingestion. Endocrinology 149, PLoS ONE 6:e19478. Akira,S.,Schwartz,M.W.,andBarsh, lationofneuropeptideYexpression 1773–1785. doi:10.1371/journal.pone.0019478 G. S. (2005b). PI3K integrates the inadultmicedoesnotaffectfeed- van den Pol, A. N. (2003). Weigh- Wierup, N., Björkqvist, M., Weström, actionofinsulinandleptinonhypo- ing.Proc.Natl.Acad.Sci.U.S.A.102, ingtheroleof hypothalamicfeed- B., Pierzynowski, S., Sundler, F., thalamicneurons.J.Clin.Invest.115, 18632–18637. ing neurotransmitters. Neuron 40, and Sjölund, K. (2007). Ghre- 951–958. Takahashi, K. A., and Cone, R. D. 1059–1061. lin and motilin are cosecreted Yang, Y., Atasoy, D., Su, H. H., and (2005). Fasting induces a large, van den Pol,A. N.,Yao,Y.,Fu,L.Y., from a prominent endocrine cell Sternson, S. M. (2011). Hunger leptin-dependent increase in the Foo,K.,Huang,H.,Coppari,R.,etal. population in the small intes- statesswitchaflip-flopmemorycir- intrinsicactionpotentialfrequency (2009).NeuromedinBandgastrin- tine.J.Clin.Endocrinol.Metab.92, cuitviaasynapticAMPK-dependent of orexigenic arcuate nucleus releasing peptide excite arcuate 3573–3581. positive feedback loop. Cell 146, neuropeptide Y/Agouti-related nucleusneuropeptideYneuronsin Willesen, M. G., Kristensen, P., and 992–1003. proteinneurons.Endocrinology146, anoveltransgenicmouseexpressing Romer, J. (1999). Co-localization Zhang, Y., Proenca, R., Maffei, M., 1043–1047. strongRenillagreenfluorescentpro- of growth hormone secretagogue Barone,M.,Leopold,L.,andFried- Tartaglia,L.A.,Dembski,M.,Weng,X., teininNPYneurons.J.Neurosci.29, receptor and NPY mRNA in the man,J.M.(1994).Positionalcloning Deng,N.,Culpepper,J.,Devos,R.,et 4622–4639. arcuatenucleusoftherat.Neuroen- of the mouse obese gene and its al.(1995).Identificationandexpres- Voglis,G.,andTavernarakis,N.(2006). docrinology70,306–316. human homologue. Nature 372, sion cloning of a leptin receptor, The role of synaptic ion channels Woods,S.C.,Lotter,E.C.,McKay,L. 425–432. OB-R.Cell83,1263–1271. insynapticplasticity.EMBORep.7, D.,andPorte,D.Jr.(1979).Chronic Zigman, J. M., and Elmquist, J. K. Tatemoto,K.,Carlquist,M.,andMutt, 1104–1110. intracerebroventricular infusion of (2003). Minireview: from anorexia V.(1982).NeuropeptideY–anovel Vong,L.,Ye,C.,Yang,Z.,Choi,B.,Chua, insulin reduces food intake and toobesity–theyinandyangofbody brainpeptidewithstructuralsimi- S.Jr.,andLowell,B.B.(2011).Leptin bodyweightofbaboons.Nature282, weight control. Endocrinology 144, laritiestopeptideYYandpancreatic actiononGABAergicneuronspre- 503–505. 3749–3756. polypeptide.Nature296,659–660. ventsobesityandreducesinhibitory Wren, A. M., Small, C. J., Ward, H. Zigman, J. M., Jones, J. E., Lee, C. Tolle, V., and Low, M. J. (2008). tonetoPOMCneurons.Neuron71, L., Murphy, K. G., Dakin, C. L., E., Saper, C. B., and Elmquist, J. In vivo evidence for inverse ago- 142–154. Taheri,S.,et al. (2000). The novel K. (2006). Expression of ghrelin nism of Agouti-related peptide Wahlestedt, C., Ekman, R., and hypothalamicpeptideghrelinstim- receptormRNAintheratandthe in the central nervous system of Widerlov, E. (1989). Neuropeptide ulatesfoodintakeandgrowthhor- mousebrain.J.Comp.Neurol.494, proopiomelanocortin-deficient Y (NPY) and the central nervous monesecretion.Endocrinology 141, 528–548. mice.Diabetes57,86–94. system: distribution effects and 4325–4328. Tong,Q.,Ye,C.-P.,Jones,J.E.,Elmquist, possible relationship to neuro- Wu,Q.,Boyle,M.P.,andPalmiter,R.D. Conflict of Interest Statement: The J.K.,andLowell,B.B.(2008).Synap- logical and psychiatric disorders. (2009).LossofGABAergicsignaling authors declare that the research was ticreleaseofGABAbyAgRPneurons Prog. Neuropsychopharmacol. Biol. byAgRPneuronstotheparabrachial conductedintheabsenceofanycom- isrequiredfornormalregulationof Psychiatry13,31–54. nucleusleadstostarvation.Cell137, mercial or financial relationships that energy balance. Nat. Neurosci. 11, Wall,N.R.,Wickershamc,I.R.,Cetina, 1225–1234. couldbeconstruedasapotentialcon- 998–1000. A., De La Parraa, M., and Call- Wu,Q.,Clark,M.S.,andPalmiter,R.D. flictofinterest. Tschop,M.,Smiley,D.L.,andHeiman, away,E. M. (2010). Monosynaptic (2012).Decipheringaneuronalcir- M.L.(2000).Ghrelininducesadi- circuittracinginvivothroughCre- cuitthatmediatesappetite.Nature Received:29October2012;accepted:31 posity in rodents. Nature 407, dependent targeting and comple- 483,594–597. December2012;publishedonline:21Jan- 908–913. mentationofmodifiedrabiesvirus. Wu,Q.,Howell,M.P.,Cowley,M.A., uary2013. Tsien, J. Z., Huerta, P. T., and Tone- Proc. Natl. Acad. Sci. U.S.A. 107, and Palmiter, R. D. (2008a). Star- Citation:LiuT,Wang Q,BerglundED gawa, S. (1996). The essential 21848–21853. vation afterAgRP neuron ablation andTongQ(2013)Actionofneurotrans- role of hippocampal CA1 NMDA Werther,G.A.,Hogg,A.,Oldfield,B.J., isindependentofmelanocortinsig- mitter:akeytounlocktheAgRPneuron receptor-dependent synaptic plas- McKinley,M.J.,Figdor,R.,Allen,A. naling.Proc.Natl.Acad.Sci.U.S.A. feeding circuit. Front. Neurosci. 6:200. ticity in spatial memory. Cell 87, M.,et al. (1987). Localization and 105,2687–2692. doi:10.3389/fnins.2012.00200 1327–1338. characterizationofinsulinreceptors Wu, Q., Howell, M. P., and Palmiter, This article was submitted to Frontiers Unger, J. W., Moss, A. M., and Liv- inratbrainandpituitaryglandusing R. D. (2008b). Ablation of neu- inNeuroendocrineScience,aspecialtyof ingston,J. N. (1991). Immunohis- invitroautoradiographyandcom- ronsexpressingagouti-relatedpro- FrontiersinNeuroscience. tochemical localization of insulin puterizeddensitometry.Endocrinol- teinactivatesfosandgliosisinpost- Copyright©2013Liu,Wang,Berglund receptors and phosphotyrosine in ogy121,1562–1570. synaptictargetregions.J.Neurosci. and Tong. This is an open-access arti- thebrainstemoftheadultrat.Neu- Whim, M. D. (2006). Near simulta- 28,9218–9226. cle distributed under the terms of the roscience42,853–861. neousreleaseof classicalandpep- Xu, A. W., Kaelin, C. B., Morton, CreativeCommonsAttributionLicense, van de Wall, E., Leshan, R., Xu, A. tidecotransmittersfromchromaffin G. J., Ogimoto, K., Stanhope, K., which permits use, distribution and W., Balthasar, N., Coppari, R., cells.J.Neurosci.26,6637–6642. Graham, J., et al. (2005a). Effects reproduction in other forums, provided Liu, S. M., et al. (2008). Col- Whim, M. D. (2011). Pancreatic ofhypothalamicneurodegeneration theoriginalauthorsandsourcearecred- lective and individual functions beta cells synthesize neu- onenergybalance.PLoSBiol.3:e415. itedandsubjecttoanycopyrightnotices of leptin receptor modulated ropeptide Y and can rapidly doi:10.1371/journal.pbio.0030415 concerninganythird-partygraphicsetc. www.frontiersin.org January2013|Volume6|Article200|9